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Abstract—This study presents a digital twin framework for
predicting the state of health (SoH) in battery management
systems (BMS). This framework integrates a single particle model
with electrolytes (SPME) and a long-short-term memory (LSTM)
network to model battery behaviour based on a NASA battery
dataset. To ensure the security of battery data, data is recorded
on the Ethereum blockchain and queried when needed for secure
prediction. To ensure the interpretability of the predictions, an
explainable AI (XAI) approach, SHAP, is employed. Experimen-
tation shows the viability of the proposed framework in accurately
predicting the SoH of physical batteries.

Index Terms—battery management system, blockchain, digital
twin, explainable AI, battery

I. INTRODUCTION

Batteries are essential components in various technologies,
such as electric vehicles, energy storage systems, and portable
electronic devices [1]. The indispensable role of batteries
highlights the importance of employing sophisticated battery
management systems (BMS) to optimize their performance,
safety, and longevity [2]. However, conventional BMS often
face challenges in real-time adjustments and accurately deter-
mining the battery’s state of health (SoH) which is crucial for
maximizing battery usage and lifespan [3]. These difficulties
stem from the intricate behavior of batteries, which changes
based on usage conditions and over time. Furthermore, most
BMSs operate on resource-constrained devices, which may lead
to delays in providing analytics results or processing data. One
solution to this challenge is the use of digital twins [2].

The digital twin is a solution that creates a virtual counterpart
of the physical battery system [2]. Utilizing live data enables
the simulation of battery performance and the prediction of
future conditions, offering a deeper insight into its operation
and potential issues. Numerous studies have successfully em-
ployed digital twins in BMS, highlighting its significant impact
on the BMS ecosystem [2]. To successfully develop a viable
battery digital twin, some studies have explored the use of
battery models such as the single particle model (SPM) and
single particle model with electrolyte (SPMe) [4] renowned for
their well-balanced representation of battery electrochemistry,
serving as the foundation of the digital twin and delivering
precise insights into the battery’s behavior. Another critical
part of developing digital twins is incorporating artificial intelli-
gence (AD) [3], [S]. Al algorithms utilize the battery model and
real-time operational data to accurately predict SoH and other
critical parameters, facilitating proactive decision-making.

A significant limitation of these digital twin solutions is
their heavy reliance on Al algorithms [6] due to the “black
box” nature of Al models obscuring their decision-making
processes, potentially eroding user trust. This challenge has
been addressed in other domains using explainable Al (XAI).
XAI is a concept that is gradually permeating diverse domains
due to its goal of ensuring that Al models are interpretable
and trustworthy [7]. According to studies by [6]-[8], the
interpretability of any approach is made up of three objectives,
including efficiency, fidelity, and understandability. An inter-
pretable model should be faithful to the data and the original
model, easy to comprehend, and quickly understood by the end-
users who seek to make informed decisions. XAl approaches
like the local interpretable model-agnostic explanations (LIME)
and Shapley additive explanations (SHAP) have been proposed
as viable methods [8]. Another limitation of digital twins is that
they rely heavily on data, which malicious users can easily
compromise. This results in developing a digital twin that does
not truly represent the actual physical battery system [9]. To
address this challenge, some studies have explored blockchain
to ensure that data employed to develop digital twins remain
secure [10], [11]. This research aims to enhance the precision
of SoH predictions, enhance data security within the BMS, and
make the system’s decisions more transparent and trustworthy
for users.

The main contributions of this paper are: (i) A hybrid digital
twin that incorporates the SPMe battery model and a long-
short-term memory (LSTM) network is proposed for a more
realistic prediction of battery SoH. (ii) The interpretability of
the proposed digital twin model is demonstrated using the
SHAP XAI approach. (iii) The security of the battery data
used for developing the digital twin model is secured using
the Ethereum blockchain. (iv) The work is verified in a BMS
scenario using a publicly available dataset.

II. METHODOLOGY
A. Digital twin framework

As illustrated in Fig. 1, the system gathers real-time battery
data, subsequently recorded in a database and secured on the
blockchain network. This process emphasizes the integrity and
protection of the data, ensuring it is immutable. The system
utilizes SPMe to simulate battery behavior using the current
data from the actual battery, resulting in a new set of data
combined with the original data and used to train an Al model
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Fig. 1. Framework for Proposed Digital Twin for BMS

to forecast the battery SoH. The SPMe and Al are combined
in a hybrid manner to form the digital twin model. The output
of the digital twin model, referring to the battery SoH, is then
subjected to the SHAP algorithm for evaluation and to identify
the features that most significantly influence the output.

B. SPMe for battery modeling

The SPM is a reduced-order electrochemical model that
assumes a uniform current density across a battery’s electrode.
To enhance the model under higher current operations, the
SPMe extends the basic SPM by reintroducing electrolyte dy-
namics, thereby increasing the model fidelity. In the SPMe, the
conservation of lithium within the solid phase of the electrode
particles is described by Fick’s second law of diffusion:
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where c; represents the concentration of lithium in the solid
phase, t is the time, r is the radial position within the electrode
particle, and D, is the solid-phase diffusion coefficient. For
the electrolyte phase, the SPMe incorporates the transport of
lithium ions, which is governed by the following equations:
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Where c. is the electrolyte concentration and J. is the molar

flux of lithium ions in the electrolyte. The electrolyte molar flux
is defined by:
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with D, being the electrolyte diffusion coefficient, ¢ the
transference number, F' Faraday’s constant, and ¢, the elec-
trolyte electric potential.

C. SoH Estimation

In this study, we employed the NASA battery dataset [12]
composed of battery datasets representing four distinct batteries
subjected to various discharge cycles. We cleaned data to iden-
tify missing data points and handle them for consistency. We
also conducted feature engineering to generate SoH estimates
using the formula:
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C' represents the capacity fade and can be represented as:
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where, C; denotes the initial capacity and C is the current
battery capacity.

D. LSTM model

A simple LSTM model was used in this study. The LSTM
model employed in this study comprises three layers: An LSTM
layer, a dense layer, and an output layer. The input features
for the LSTM model include real battery data, including cur-
rent charge, temperature measured, voltage measured, voltage
charge, capacity, time, cycle number, resistance increase, and
capacity fade. Additionally, outputs of the SPMe simulation
like voltage and current are included to provide the model with
rich information on the battery’s internal state and reaction to
discharging cycles. The model is trained to minimize the mean
squared error (MSE) loss function.



E. SHAP XAI method

The SHAP framework offers a cohesive approach for ex-
plaining the predictions of Al models [13]. In this study, we
employed SHAP to analyze and interpret the outputs of the
digital twin model developed to estimate the battery SoH.

The process and implications of SHAP, as discussed in [13],
are summarized as follows:
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Where ¢_i represents the SHAP value for feature i, F'
denotes the set of all features, S denotes a subset of features
excluding ¢, f_x(S U {i}) and f_x(S) represent the model
outputs with and without the feature ¢, respectively, and

Fig. 1 illustrates how the SHAP approach was applied to the
digital twin model to explain the SoH predictions.

Due to the presence of the LSTM layer in the model, a
custom prediction wrapper function was created. This function
reshaped the input data into a 3D format suitable for LSTM,
performed the prediction, and reshaped the predictions into a
2D format for compatibility with SHAP.

A subset of the training data (X _train) was selected to create
a background dataset for the SHAP explainer. This background
was reshaped to align with the LSTM input requirements.
A SHAP Kernel Explainer was instantiated using the cus-
tom LSTM prediction function and the reshaped background
dataset. For the test dataset, denoted by X _test, SHAP values
were computed. The dataset was reshaped to align with the
LSTM model’s input format. The SHAP summary and force
plots were employed to visualize and analyze the contribution
of individual features to the predictions.

The overall decision impact ratio (DIR), which represents
the average impact of the features, was calculated as:
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where S_i is the mean absolute SHAP value of the i*" feature.
Moreover, the confidence scores for the model’s predictions
were computed as follows:

C = max(p_k), 3

where C represents the confidence scores and p_k is the
predicted probability for each class k.

FE. Blockchain data recording

A smart contract (SC) based on the Ethereum blockchain
was the backbone for storing battery data. The contract is
written in Solidity and includes functions to add and retrieve
battery data entries. Each entry in the Blockchain includes
data such as the battery’s cycle number, capacity, resistance
increase, capacity fade, etc, and timestamp. Two main functions
are defined in the SC, including the addBatteryData, which
stores the battery’s cycle number, capacity, resistance increase,

capacity fade, etc, and timestamp and the getBatteryData,
which retrieves entries based on their storage index in the
storage array.

The battery data is initially collected and stored in a CSV
file format. A Python script reads this file, processes the data,
and interacts with the deployed SC to upload each entry to
the blockchain. A Python script parses the CSV file, reading
attributes for each battery entry. The script utilizes the Web3.py
library to connect to the Ethereum network and calls the
addBatteryData function of the SC to upload each parsed
entry. The SC is deployed to the Ethereum network using a plat-
form that facilitates testing and migration. Battery data entries
are added to the blockchain through transactions initiated by
the Python script and by calling the get BatteryData function
to retrieve data entries.

Some performance metrics used to analyze and evaluate the
efficacy and efficiency of the blockchain recording include:

e Gas costs: The total gas cost G for a transaction was
computed as G = g, X gp, where g, is the gas used,
and g, is the gas price.

o Latency: The latency L of a transaction was estimated as
L =T, x N. Where Ty is the average block time or the
time it takes to mine one block on the blockchain, and [NV
is the number of blocks that needed confirmation for the
transaction to be considered secure.

o Throughput: The throughput ® is the number of transac-
tions that can be processed per unit of time. It can be
approximated as: ¢ = where T, is the number of
transactions per block.
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1II. IMPLEMENTATION
A. Digital twin model development

The simulations were conducted using Google Colab plat-
form. The experiments utilized a Colab notebook configured
with a Tesla T4 GPU. The simulations were performed using
Python 3.7.12. Key libraries used include TensorFlow 2.8.0 and
Keras 2.8.0 for AI model development and training, PyBaMM
22.9 for battery model simulations, and SHAP 0.40 for AI
model interpretability. The battery current and time data were
used as input in simulating an SPMe battery model to create
new features such as voltage, time, and current. Other details
of this experiment are described in Table. I.

B. Blockchain data recording

Our research utilized Remix IDE, an open-source web and
desktop application, for writing, deploying, and testing SCs
directly in a browser.

For local testing and development, we used Ganache, a
part of the Truffle Suite, which provides a personal Ethereum
blockchain to run tests, execute commands, and inspect state
while controlling how the chain operates. This tool was in-
strumental in allowing us to develop applications with a faster,
more customized setup than the main Ethereum network.



TABLE I

SIMULATION PARAMETERS AND EXPERIMENT SETTINGS

Parameter/Setting

Description/Value

PyBaMM Simulation Parameters

Battery Model
Solver
Experiment Type

Number of Cycles
Parameter Values

Single Particle Model with Electrolyte (SPMe)
CasADi solver with *safe’ mode

Discharge at C-rate for 1 hour, followed by
rest

100 cycles with data logging every 10 seconds
Default values modified for temperature and
aging effects

AI Model Training Settings

Framework

Neural Network Type
Number of Layers
Activation Function

TensorFlow and Keras

Long Short-Term Memory (LSTM)

2 LSTM layers with 64 units each

ReLU for hidden layers, linear for output layer

Loss Function Mean Squared Error (MSE)

Optimizer Adam optimizer
Batch Size 32
Number of Epochs 100

Training Data Split
Feature Scaling

70% training, 20% validation, 10% test
Min-Max normalization

Web3.js was utilized to create client-side applications that
interact with the Ethereum blockchain. This JavaScript library
enabled our applications to send transactions, interact with SCs,
and retrieve data from the blockchain, which is needed for the
real-time data recording our project required. More details of
the blockchain setup are represented in Table. II

TABLE II
BLOCKCHAIN DEVELOPMENT TOOLS

Tool Version/Type Usage

Ethereum Blockchain Platform  Deployment of SCs

Solidity 0.8.x SC programming language

Remix IDE Web version SC compilation and testing
Ganache CLI v6.12.2 Local blockchain testing

Truffle Suite  v5.3.x SC compilation, & deployment
Web3.js 1.4.x Interface for blockchain interaction
IPES - Decentralized storage solution
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Fig. 2. Illustration of the current and voltage distribution for the batteries.

IV. RESULTS AND DISCUSSION

The experiments conducted were based on two different
batteries: 0005 and B0006. Fig. 2 illustrates the violin plots
showing the current and voltage distribution for four batteries
in the dataset. From these plots, the batteries have a relatively
consistent pattern of current and voltage, with very minimal
variations.

The SPMe simulation results for battery B0005 is rep-
resented in Fig. 3, comparing the simulated and measured
battery voltage and current. At the same time, the results for
the simulated voltage show some discrepancies compared to
the measured voltage; the simulated current shows minimal
discrepancies.

The results of the Al model training are presented in Table III
and highlight the MSE and MAE results obtained for the
two batteries after testing. These results show a minimal error
between the predicted battery SoH and the actual battery SoH.

The SHAP summary and force plots are represented in
Figs 4 and 5. According to Fig. 4, for both batteries, the
capacity feature has a high positive impact on the model’s
output, indicating that higher capacity values contribute to an
increase in prediction. The simulated current and voltage show
variability in their impact. In battery B0005, the simulated
current has a predominantly negative contribution. According
to Fig. 5, the base value, which is the average prediction of
the model across all instances, is 75.91 and 76.69 for batteries
B0005 and B0006, respectively. The red features highlight
features that push the prediction higher, while the blue features
represent features that lower the prediction. The final prediction
for the instance is high at 89.66 for battery B0005 and lower
at 61.62 for battery B0006.

TABLE III
SUMMARY OF RESULTS FOR DIGITAL TWIN

Metric B0005 B0006
Initial Data Shape 45,112, 16 44,354, 16
Cleaned Data Shape 45,112, 10 44,354, 10
Final Data Shape 45,112, 13 44,354, 13
Mean Squared Error (MSE) 0.000407399  0.00120599
Mean Absolute Error (MAE) 0.0153018 0.032276
Average Confidence 77.11832 75.54231
Decision Impact Ratio (DIR) 2.578448 2.5488

TABLE IV

BLOCKCHAIN TRANSACTION RESULTS FOR RECORDING AND QUERYING
DATA FOR BATTERIES BO0O0O5 AND B0006.

Metric Battery B0005 Battery B0006
Record Query Record Query
Gas Cost (units) 21000 25000 22000 26000
Latency (seconds) 0.15 0.55 0.12 0.55
Throughput (tx/sec) 5 6 6 8

As highlighted in Table IV, recording transactions for battery
B0005 costs 21,000 gas units, which aligns with the average
benchmarks of the Ethereum network. In contrast, battery
B0006 incurred a slightly higher gas cost of 22,000 units, which
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Fig. 4. SHAP summary plots for Battery BOO05 and Battery BO006, showing the features influencing the SHAP values on the model output.

may suggest a greater volume of transactions or more complex
data. When querying the blockchain, battery BO0O0S exhibited
a higher gas cost of 25,000 units compared to recording,
which may be attributed to the retrieval of state-modifying
transactions. Similarly, battery BO006 saw an increase in gas
cost to 26,000 units during queries, further emphasizing the

intensive nature of read operations on the Ethereum network.
The performance of the two batteries in terms of recording
transaction latency was satisfactory, with BO0OO5 and B0006
achieving times of 0.15 seconds and 0.12 seconds, respectively.
These figures align with Ethereum’s anticipated block times,
ensuring minimal delay in data recording. However, the latency
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for querying was higher for both batteries at 0.55 seconds,
suggesting that the read operations may involve more com-
plex computational processes or experience temporary network
congestion, leading to slower response times. The throughput
for recording transactions was consistent, with B0O005 and
B0006 processing 5 and 6 transactions per second, respec-
tively. This demonstrates the network’s efficiency in handling
multiple transactions. Additionally, the throughput for querying
increased for both batteries, reaching 6 tx/sec for BOOO5 and
8 tx/sec for BO006, which is essential in high-frequency data
environments.

V. CONCLUSION

This study presents a digital twin framework that integrates
SPMe for modeling battery behavior, LSTM for predicting bat-
tery SoH, SHAP for interpretability of results, and blockchain
for securing battery data. The performance of the SPMe and
Al battery modeling shows that the models can reproduce the
behavior of the real battery with minimal error. The SHAP
XAI method explained the features that contributed to the
predictions. Finally, the results of the blockchain recording
highlight the potential of blockchain in securing battery data.
Future research will investigate methods of improving battery
modeling and for better feature engineering.
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