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Abstract—Machine learning (ML) techniques are increasingly
used in brain age prediction to assess brain health and detect
neurological and psychiatric disorders. The availability of large,
publicly accessible imaging datasets has accelerated the adoption
of ML-based methods. However, multi-site MRI datasets present
challenges due to site effects, which can introduce biases and
affect the accuracy of brain age prediction. In this study, we
examined the influence of MRI data harmonization on brain
age prediction by comparing models trained with and without
harmonization across a large-scale, multi-site dataset of 10,938
healthy individuals aged 5 to 95 years. Using automated ML
approaches, we trained various models and computed SHapley
Additive exPlanations (SHAP) values to identify the key features
driving brain age predictions. Our results showed that while
a weighted ensemble method achieved high prediction accuracy
(MAE = 7.013; R = 0.860), data harmonization reduced prediction
performance, indicating that site-related variability contains
valuable information influencing model predictions. SHAP anal-
ysis also revealed substantial site-specific biases impacting the
predictions. These findings suggest the need to account for site-
specific factors in multi-site MRI studies. Understanding the
impact of site harmonization is crucial for developing robust and
generalizable brain age prediction models that can be applied
across diverse populations and imaging settings.

Index Terms—brain age, machine learning, magnetic resonance
imaging, site effects, feature importance

I. INTRODUCTION

Brain age prediction, a rapidly evolving field in neuro-
science, aims to estimate an individual’s chronological age
based on neuroimaging data [1]. This technique holds sig-
nificant promise for early detection of brain disorders and
understanding the underlying mechanisms of brain aging [2]–
[4]. However, the accuracy and generalizability of brain age
prediction models can be hindered by the challenges posed by
multi-site neuroimaging data [5].

Multi-site studies often involve data collected from different
institutions using varying imaging protocols, scanner types,
and acquisition parameters. These differences can introduce
biases and artifacts, known as site effects or batch effects, that

can confound the analysis and reduce the model’s ability to
accurately predict brain age across diverse populations [5].

To address these challenges, MRI data harmonization tech-
niques have been developed. These methods aim to reduce the
impact of site-specific variations, enabling more consistent and
comparable analyses across different datasets. By harmonizing
data, researchers can improve the generalizability and reliabil-
ity of brain age prediction models, leading to more accurate
and meaningful results [5].

This study leverages automated machine learning (AutoML)
to optimize brain age prediction models and investigates the
impact of MRI data harmonization on their performance.
AutoML streamlines the model development process by au-
tomating tasks such as model selection and hyperparameter
tuning, enabling efficient and effective model building. We aim
to examine the impact of MRI data harmonization on brain
age prediction by comparing the performance of brain age
prediction models trained with and without harmonization. We
also compute SHapley Additive exPlanations (SHAP) values to
identify influential features driving brain age prediction. This
study contributes to the advancement of brain age prediction
by providing valuable insights into the role of site harmoniza-
tion and the potential benefits of using AutoML in this field.

II. METHODS

A. Datasets

We compiled a large-scale T1-weighted MRI dataset by in-
tegrating data from 20 independent, publicly available sources.
The final dataset includes 10,938 healthy individuals (5,692
female) with an age range of 5 to 95 years [6]–[25]. Detailed
demographic and dataset-specific information are provided
in Table I.

B. Data Processing and Feature Extraction

We used FreeSurfer (version 7.2.0) [26] to extract structural
features from the MRI scans. A total of 215 features were



Fig. 1. Overview of the workflow for brain age prediction using AutoML.

TABLE I
SUMMARY OF DATASETS WITH PARTICIPANT DETAILS

Dataset N M/F Mean Age±S.D. Age Range
DLBS 314 117/197 54.00 ± 20.04 20–89
fcon1000 987 554/491 30.10 ± 14.40 7–85
HBN 971 628/343 10.33 ± 3.37 5.05–21.22
HCP 1,061 486/575 28.75 ± 3.67 22–37
IXI 562 250/312 48.65 ± 16.47 19.98–86.32
MCIC 94 64/30 32.63 ± 11.97 18–60
AOMIC 209 89/120 22.18 ± 1.79 18.25–26.25
BGSP 1,493 632/861 21.53 ± 2.89 19–35
BNU 180 73/107 21.22 ± 1.93 17–28
Cam-CAN 631 312/318 54.93 ± 18.38 18–88
COBRE 93 67/26 37.63 ± 11.66 18–65
CoRR 1,373 692/681 24.60 ± 13.66 6–84
DecNef 949 538/411 36.59 ± 15.52 18–80
NARPS 108 48/60 25.54 ± 3.59 18–37
NPC 65 29/36 26.55 ± 4.30 20–35
NUSDAST 98 53/45 31.96 ± 13.76 14–67
OASIS-3 714 306/408 68.68 ± 8.91 42–95
SALD 494 187/307 45.18 ± 17.44 19–80
SLIM 387 244/305 20.07 ± 1.26 17–27
UCLACNP 125 66/59 31.52 ± 8.79 21–50
Total 10,938 5,246/5,692 32.61 ± 19.14 5.05–95

selected for analysis, including 100 cortical thickness (CT) and
100 surface area (SA) features derived from the Schaefer100

atlas [27], along with 14 subcortical volume features from
the Aseg atlas [28] and intracranial volume as an additional
feature. To mitigate site-specific effects from the 20 inde-
pendent datasets, we applied the neuroCombat harmonization
technique [29], which effectively removed confounding in-
fluences related to different scanning sites. The dataset was
then split into five folds for cross-validation, and we used
the Kolmogorov-Smirnov test to ensure that each fold was
stratified by age, with an even age distribution across the folds.

C. Machine Learning Models

We employed a variety of machine learning models for brain
age prediction, including KNeighborsUnif [30], KNeighbors-
Dist [31], ExtraTrees [32], RandomForest [33], XGBoost [34],
LightGBM [35], LightGBMXT [35], LightGBMLarge [35],
CatBoost [36], NeuralNetFastAI [37], NeuralNetTorch [38],
and WeightedEnsemble [38]. Each of these models was se-
lected for its distinct capabilities in handling complex, high-
dimensional data, and the ensemble method was designed
to further improve accuracy by leveraging the strengths of
multiple models.



TABLE II
MODEL PERFORMANCE COMPARISON BETWEEN HARMONIZED AND

NON-HARMONIZED SAMPLES

Model Non-harmonized Harmonized
MAE R MAE R

KNeighborsUnif 10.573 0.643 12.821 0.482
KNeighborsDist 10.511 0.646 12.795 0.485
ExtraTrees 7.630 0.848 9.277 0.776
RandomForest 7.408 0.846 9.035 0.779
XGBoost 6.580 0.874 8.050 0.823
LightGBMLarge 6.543 0.875 8.000 0.825
LightGBMXT 6.230 0.888 7.643 0.843
LightGBM 6.362 0.882 7.795 0.835
CatBoost 6.302 0.887 7.673 0.841
NeuralNetFastAI 5.659 0.900 7.630 0.838
NeuralNetTorch 5.468 0.897 7.274 0.841
WeightedEnsemble 5.340 0.910 7.013 0.860

D. Experiment Settings and Evaluation Metrics

We utilized the AutoML library AutoGluon [38] for training
our machine learning models, applying the default preset
“medium quality” for hyperparameter optimization. The mod-
els were trained using root mean squared error (RMSE) as the
loss function to optimize prediction accuracy. Our hardware
setup included an Intel(R) Core(TM) i9-10900X CPU @
3.70GHz paired with an NVIDIA RTX 4090 24GB GPU,
running on Ubuntu 20.04.6 LTS.

The model performance was evaluated based on mean
absolute error (MAE) and Pearson’s correlation coefficient (R)
between predicted brain age and chronological age, ensuring
robust assessment of predictive accuracy and consistency.

III. RESULTS

A. Effect of Data Harmonization

Table II shows that models trained on non-harmonized data
(MAE = 5.340 – 10.573; R = 0.643 – 0.910) consistently
outperformed those trained on harmonized data (MAE = 7.013
– 12.821; R = 0.482 – 0.860). This trend was observed
across all models, with the WeightedEnsemble model ex-
hibiting a notable decline in performance after harmonization
(MAE increased by 1.673, R decreased by 0.050). Our results
demonstrate that site harmonization did not improve model
accuracy, as evidenced by higher MAEs and slightly lower
R values (Table II). This suggests that harmonization may
have inadvertently disrupted some of the valuable variability
present in non-harmonized data. These findings suggest the
importance of carefully considering the impact of data harmo-
nization on model performance. While harmonization is often
seen as a necessary step to mitigate site-specific biases, our
results suggest that it can also reduce the model’s ability to
capture important information. Future research should explore
alternative approaches to addressing site-specific biases that
may preserve more of the valuable variability in the data.

B. Feature Importance

We computed SHAP values using the best-performing
model to assess and compare feature importance between
harmonized and non-harmonized datasets (Table III). In the

non-harmonized data, SHAP analysis revealed substantial vari-
ability in feature importance across sites, indicating the pres-
ence of site-specific biases. For example, the left accumbens
ranked as the most important feature with a SHAP value of
1.318, potentially reflecting site-related artifacts rather than
true biological relevance in brain age prediction. Similarly, the
right putamen volume, while consistently identified as a key
feature, showed varying importance (SHAP value of 1.230)
across different sites, highlighting the influence of site-specific
factors on the model’s interpretation. Several cortical features,
such as cortical thickness in the left PFC and surface area in
the left precentral, also ranked highly in the non-harmonized
dataset, but may have been influenced by site-specific effects
rather than true predictive power. The left thalamus volume,
which had a lower SHAP value (0.556) before harmonization,
became highly important after harmonization, suggesting that
site-related factor might have obscured its true significance.
These findings suggest the critical role of site harmonization,
as site-specific biases can distort the model’s interpretation of
feature importance, leaning to less reliable and generalizable
predictions.

TABLE III
TOP 10 ABSOLUTE MEAN SHAP VALUES FOR HARMONIZED AND

NON-HARMONIZED SAMPLES (L = LEFT; R = RIGHT)

Harmonized
Feature Mean(|SHAP value|)
Intracranial volume 2.446
L thalamus volume 1.498
R thalamus volume 0.876
R amygdala volume 0.870
R putamen volume 0.848
R precentral CT 0.754
L occipital CT 0.656
L PFC CT 0.606
L fronto-opercular/insula SA 0.599
L temporal SA 0.505
Non-harmonized
Feature Mean(|SHAP value|)
L accumbens SA 1.318
R putamen volume 1.230
L PFC CT 0.709
L precentral SA 0.675
L occipital CT 0.657
R pallidum volume 0.628
L thalamus volume 0.556
L medial CT 0.550
L posterior CT 0.544
L medial CT 0.526

IV. CONCLUSION

This study demonstrates the effectiveness of AutoML for
brain age prediction in multi-site MRI datasets, particularly
when combined with a weighted ensemble approach. While
AutoML simplifies the model development process, our find-
ings highlight the importance of careful consideration of site
harmonization. Site harmonization, while intended to reduce
biases, can have varying effects on model performance. In
our study, it often led to decreased accuracy, suggesting
that site-specific factors may contain valuable information for



Fig. 2. Comparison of absoulte mean SHAP values across brain regional features (cortical thicknes, surface area, and subcortical volume) between harmonized
and non-harmonized dataset.

prediction. SHAP value analysis further revealed the influence
of site-specific biases on feature importance, emphasizing the
need for targeted harmonization techniques. Future research
should focus on developing more effective site harmonization
methods tailored to specific datasets and imaging modalities.
By addressing site-specific biases, we can improve the ac-
curacy and generalizability of brain age prediction models,
enabling more reliable insights into brain health and disease.
Furthermore, applying these findings to specific populations,
such as individuals with schizophrenia, can provide valuable
insights into disease-related brain changes and inform the
development of targeted interventions.
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