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Abstract—In this study, we evaluated ten machine learning
models to predict stroke prognosis and compared them with
the NIHSS scoring system using metrics like AUC, precision,
recall, and F1-score. The top performers were DNN, XGBoost,
and LightGBM, excelling in AUC, recall, and F1-score. Given the
importance of recall in hospital settings, our findings suggest that
machine learning models, particularly DNN, are more effective
than NIHSS for predicting the prognosis of stroke patients.
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I. INTRODUCTION

Stroke is a neurological deficit caused by damage to blood
vessels in the central nervous system [1]. Stroke is the second
leading cause of death worldwide, and is a dangerous disease
with a low long-term survival rate. According to a study
in Sweden, 135 of 400 (33%) first-time stroke patients died
within three years of their stroke [2]. Therefore, predicting the
prognosis of stroke patients and appropriately treating them is
critical.

To predict the prognosis of stroke patients, various scoring
systems such as Cincinnati Prehospital Stroke Severity Scale
[3], National Institutes of Health Stroke Scale (NIHSS) [4],
and PLAN score (derived from preadmission comorbidities,
level of consciousness, age, and neurologic deficit) [S] have
been created. Among them, NIHSS considers the most vari-
ables, comprising 15 variables. However, predicting the prog-
nosis of patients by relying solely on this score is difficult
because NIHSS does not consider all variables associated with
stroke prognosis.

However, machine learning (ML) models have the advan-
tage of considering all patient characteristics because they can
be trained on unlimited variables. Accordingly, ML is currently
used to predict the prognosis of cancer, traumatic brain injury,
and Alzheimer’s disease [6]—[8].

In this study, we trained various ML models using more
variables than conventional scoring systems. This study aimed
to predict the prognosis of patients with stroke more effectively
than the existing NIHSS scoring system using ML models.
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II. METHOD

A. Data

In this study, we used data of stroke patients from Hal-
Iym University Sacred Heart Hospital and Hallym University
Chuncheon Sacred Heart Hospital. The patient data comprised
56 variables, including age, sex, time of admission, blood tests,
medical history, and medication history, for patients hospi-
talized between 2010 and 2023. Among these, 29 variables
were used to train the model, including age, time from onset
to arrival, body mass index, initial NIHSS score, pre-stroke
modified Rankin Scale (mRS), medication history, specific
treatment, blood test values, blood pressure, medical history,
and smoking status [9]. Then, to address multicollinearity
among variables, we converted low-density lipoprotein into
categorical data ranging from 0 to 4 based on 100, 130,
160, and 190 mg dL—'. High-density lipoprotein was con-
verted into categorical data ranging from O to 2 based on 40
and 60 mg dL ™. Systolic and diastolic blood pressures were
converted to categorical data from O to 5 based on the Focused
Update of the 2018 KSH Guideline from the Korean Society
of Hypertension [10].

Before using the data, we removed data from patients with
missing values and used those from 7190 stroke patients.
(Fig.1) We used 80% (n = 5752) of the above data as training
data and the remaining 20% (n = 1338) as test data. The data
were divided such that the ratio of negative to positive patients
in the training and test sets was the same.

For this study, we considered mRS scores of 0, 1, or 2 as
negative data with a favorable prognosis and mRS scores of 3,
4, 5, or 6 as positive data with a poor prognosis. Accordingly,
we entered O as the PoorOutcome variable for patients with
mRS scores of 0, 1, or 2, and 1 for the remainder. In contrast,
the NIHSS score was used as the control for all models. At
this time, patients with a good prognosis were predicted if the
score was five or less, and those with a poor prognosis if the
score was six or more [11].
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Fig. 1. Flow chart illustrating patient selection.

B. Machine Learning Algorithms

A total of ten ML algorithms were used: logistic regression,
random forest classifier, support vector classifier (SVC), deep
neural network (DNN), extreme gradient boosting (XGBoost),
histogram-based gradient boosting, adaptive boost classifier
(AdaBoost), light gradient boosting (LightGBM), TabNet, and
ghost batch normalization TabNet (GBNTabNet).

o Logistic regression: An ML algorithm used for classifi-
cation, where the linear combination of input features is
transformed into probabilities using a sigmoid function.

« Random forest classifier [12]: An ensemble learning
method that constructs multiple decision trees and com-
bines their predictions. A total of 300 decision trees were
used in this study.

e SVC [13]: A type of supervised learning algorithm that
determines the optimal hyperplane to separate classes in
the feature space, aiming to maximize the margin between
different classes.

o DNN: An artificial neural network with multiple hidden
layers between input and output layers. Two hidden layers
with 64 neural network units were used. The weights in
the first layer are initialized using a Glorot uniform ini-
tializer. Both hidden layers include batch normalization,
ReLU activation function, and dropout at rates of 0.3 and
0.5. The output layer comprises a single neuron with a
sigmoid activation function. The model is compiled using
the RMSprop optimizer with a learning rate of 0.00001
and momentum of 0.96. The binary cross-entropy loss
function is used, along with the area under the receiver
operating characteristic (ROC) curve (AUC) metric, to
evaluate the performance.

o XGBoost [14]: An advanced ensemble learning method

that constructs multiple decision trees sequentially with
optimization and regularization. For XGBoost, 300 deci-
sion trees with a maximum depth of 3 and a learning rate
of 0.05 were used.

Histogram-based gradient boosting [15]: A variant of
gradient boosting that uses histogram-based algorithms to
accelerate the training process by discretizing continuous
feature values into bins. For histogram-based gradient
boosting, 300 decision trees with a maximum depth of
3 and a learning rate of 0.05 were used.

AdaBoost [16]: An ensemble learning technique that
sequentially combines multiple weak classifiers, adjusting
the weights of misclassified samples. For AdaBoost, 300
decision trees with a maximum depth of three and a
learning rate of 0.05 were used.

LightGBM [17]: A gradient boosting framework that
uses gradient-based one-sided sampling and exclusive
feature bundling. For LightGBM, 300 decision trees with
a maximum depth of 3 and a learning rate of 0.05 were
used.

TabNet [18]: A deep learning model for tabular learning
that uses a sequential attention mechanism, instance-wise
feature selection, and visualization of selection masks.
For TabNet, a batch size of 64 and a virtual batch size
of 32 were used.

GBNTabNet [19]: A TabNet with ghost batch normaliza-
tion that normalizes data based on smaller mini-batches
within each larger batch. For GBNTabNet, a batch size
of 64, a virtual batch size of 32, and a ghost batch size
of 16 were used.

IIT. RESULTS

In this study, we compared the performance of ML algo-
rithms with the NIHSS score in terms of AUC, precision,
recall, and F1-score.

o AUC: Area under the ROC curve. The ROC curve plots

the true positive rate (TPR) against the false positive rate
(FPR) at various threshold settings. The AUC provides a
single metric that summarizes the ability of the model to
distinguish between two classes. A model with an AUC
close to 1.0 is considered to have good discriminatory
power.

Precision: A metric that measures the proportion of cor-
rect positive predictions made by the model. The formula
for precision is as follows:

True Positives (TP)
True Positives (TP) 4 False Positives (FP)
Recall: A metric that measures the proportion of actual

positive cases correctly identified by the model. The
formula for recall is as follows:

True Positives (TP)
True Positives (TP) 4 False Negatives (FN)
We compared recall because of its medical importance:
predicting a positive patient with a poor prognosis as
having a good prognosis is life-threatening. The higher

Precision =

Recall =
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Fig. 2. Mean receiver operating characteristic(ROC) curve for NIHSS and
multiple models. ROC curves for all models are above NIHSS. DNN and
LightGBM have the largest area under the curve (AUC), but there is not
much difference between the 10 models.

the recall of the ML model, the greater the number of
patients with a poor prognosis that could be predicted.
Therefore, recall is an important indicator in determining
the models that can be used in hospital settings.

o Fl-score: A metric used to evaluate the performance of
a binary classification model by balancing precision and
recall. This is the harmonic mean of precision and recall.
The formula for the F1 score is:

Fl score — 2 x Precision x Recall

Precision + Recall
A. Comparison of the Models

First, as summarized in TABLE I, the AUC of the ML
models was higher than that of the NIHSS. Comparing the
AUC of each model, the top three performing models were
LightGBM, DNN, and XGBoost, which outperformed NIHSS
by up to 9.901%. However, the AUC values for LightGBM,
DNN, and XGBoost were only 2.069% higher than logistic re-
gression, which was the lowest. In other words, no significant
difference was observed in the AUC of the models. The ROC
curve in Fig.2 shows that the ML models performed better than
the NIHSS; however, no significant difference existed between
them.

Second, the precision of all models except the DNN was
higher than that of the NIHSS. Comparing the precision of
each model, the top three performing models were random
forest classifier, SVC, and GBNTabNet, which outperformed
NIHSS by up to 26.608%.

Third, the recall of the models excluding logistic regression,
random forest classifier, and SVC was higher than that of the
NIHSS. Comparing the recall of each model, the top three
performing models were DNN, XGBoost, and LightGBM,
which outperformed the NIHSS by up to 28.007%.

Finally, the F1-scores of all models, except the random for-
est classifier, were higher than that of the NIHSS. Comparing
the F1 scores of each model, the top three performing models
were DNN, XGBoost, and LightGBM, which outperformed
NIHSS by up to 11.975%.

IV. DISCUSSION

This study showed that using medical data, ML models can
predict stroke patient prognoses. The AUC of all models were
higher than that of the NIHSS. Except for the logistic regres-
sion and random forest classifiers, the remaining eight models
outperformed the NIHSS in terms of recall and F1- score. This
was because, unlike the NIHSS score, they considered more
variables associated with stroke prognosis without limiting the
number of variables. Additionally, the top three models, DNN,
LightGBM, and XGBoost, exhibited significant dominance in
AUC, recall, and F1-score compared with the NIHSS score.

Logistic regression, random forest classifier, and GBNTab-
Net, which had the lowest recall and F1-score, had the highest
precision. This implies that the three models were trained
to be conservative in their positive predictions to avoid false
positives. However, several patients with poor prognoses have
not been identified using these models. This is an undesirable
characteristic of the model in hospital settings.

This study concluded that DNN is the most appropri-
ate model for predicting stroke prognosis among other ML
models. DNN had the highest AUC, recall, and F1 scores
compared to the other models. In addition, DNN exhibited a
significant dominance in recall, which is an important metric
for determining whether a model is practical for patients
in practice. Therefore, if the DNN model in this study is
used as a stroke prognosis prediction model, 77.7% of the
patients with poor prognosis can be diagnosed in advance
based on clinical data. Diagnosing patients with poor prognosis
in advance, which is insufficient for the NIHSS score, will
contribute toward improving the survival rate of these patients.
The potential of the DNN model to achieve these outcomes
should instill confidence in its effectiveness and the potential
to significantly improve patient outcomes.

However, the models used in this study have several lim-
itations. First, they can only classify patient prognoses into
positive or negative categories. In addition, patients who died
because of poor prognosis should have been used as essential
data for training the models. However, these were removed
during data preprocessing because of missing clinical data. A
clear need for future research in this field exists. If multi-
classification models are trained with the inclusion of clinical
data from deceased patients, they could potentially surpass
the models presented in this paper. These models can provide
more detailed prognostic information, further enhancing the
ability to predict and manage stroke outcomes.
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TABLE I

COMPARISON OF THE NIHSS AND MACHINE LEARNING MODELS

Machine learning model

AUC

Precision

Recall

F1-score

NIHSS

Logistic Regression
Random Forest Classifier
Svc

DNN

XGBoost
histogram-based gradient boosting
AdaBoost

LightGBM

TabNet

GBNTabNet

0.808
0.870 [0.861-0.879]
0.870 [0.864-0.877]
0.874 [0.868-0.881]
0.887 [0.887-0.888]
0.884 [0.879-0.890]
0.884 [0.877-0.891]
0.883 [0.873-0.893]
0.888 [0.883-0.894]
0.871 [0.864-0.879]
0.875 [0.866-0.885]

0.684
0.791 [0.761-0.822]
0.866 [0.850-0.906]
0.798 [0.764-0.826]
0.670 [0.661-0.680]
0.782 [0.756-0.807]
0.780 [0.744-0.802]
0.787 [0.753-0.812]
0.781 [0.760-0.798]
0.786 [0.771-0.818]
0.797 [0.776-0.824]

0.607
0.597 [0.581-0.612]
0.413 [0.389-0.437]
0.594 [0.575-0.613]
0.777 [0.772-0.783]
0.657 [0.642-0.693]
0.646 [0.636-0.656]
0.643 [0.620-0.666]
0.653 [0.638-0.668]
0.631 [0.611-0.650]
0.621 [0.602-0.640]

0.643
0.680 [0.667-0.693]
0.559 [0.536-0.582]
0.681 [0.666-0.696]
0.720 [0.716-0.723]
0.714 [0.703-0.725]
0.706 [0.696-0.716]
0.707 [0.691-0.724]
0.711 [0.700-0.721]
0.699 [0.686-0.713]
0.698 [0.683-0.713]
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