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Abstract—The Internet of Vehicles (IoV) is a distributed
network where connected vehicles and roadside units commu-
nicate seamlessly with one another and surrounding infrastruc-
ture. While this network facilitates enhanced inter-vehicular
communication, its open and dynamically changing topology
makes it vulnerable to the presence of malicious vehicles. These
vehicles can transmit false and inaccurate messages, leading to
severe, potentially life-threatening consequences for road users
and compromising overall network security. Furthermore, the
temporary and unreliable vehicle interaction can aggravate trust
issues, hindering effective decision-making. However, existing
trust management systems fall short of meeting the evolving
demands of IoV, particularly in terms of accuracy, scalability, and
real-time performance. We propose a novel trust management
model for IoV to address these challenges. The model employs a
Random Forest-based vehicle trust model to detect misbehavior
and a data trust model using the Dempster-Shafer Theory
to aggregate trust ratings from neighboring vehicles, compre-
hensively assessing event credibility. The final trust scores are
securely stored on a permissioned blockchain using Hyperledger
Fabric, ensuring the integrity of the trust scores while optimizing
latency and throughput. The model’s scalability and efficiency
are validated through rigorous testing, significantly advancing
IoV trust management.

Index Terms—Blockchain, trust management, internet of ve-
hicles, machine learning

I. INTRODUCTION

In recent years, the advancement of technologies such as
next-generation wireless communication, sensor technology,
and intelligent transportation technology has paved the way
for the emergence of the Internet of Vehicles (IoV) to enhance
traffic efficiency, driving safety, and convenience for road
users. [oV is a self-organizing and inter-vehicular communi-
cation network in which the nodes consist of roadside units
(RSU) and vehicles equipped with onboard units (OBU) [1].
These vehicles can communicate and exchange messages with
other vehicles through vehicle-to-vehicle (V2V), with RSUs
through vehicle-to-infrastructure (V2I), or with pedestrians
through vehicle-to-pedestrian (V2P) communications.

Vehicles and RSUs periodically send messages that gener-
ally contain road conditions (such as road congestion, accident
conditions, and hazardous weather conditions) and vehicle
conditions (such as vehicle location, speed, and direction)
to help awareness of the current road situation and improve
safety [1], [2]. However, due to the open nature and dynami-
cally changing topology characteristics of IoV, the presence
of malicious vehicles can cause the transmission of false

and inaccurate messages, which may result in severe life-
threatening consequences for road users and compromise the
security of the network [3]. Additionally, the communication
between vehicles is temporary and unreliable, which may
result in a lack of trust between entities and affect normal
decision-making of the vehicles [4], [5].

Although cryptographic-based security mechanisms can ad-
dress security issues and resist external attackers through
authorization and authentication, they cannot protect against
internal attackers that bypass security checks [6]-[8]. In ad-
dition, they cannot assess the trustworthiness of the entities
or verify the reliability of the exchanged messages. Therefore,
to ensure the trustworthiness of vehicles and the reliability
of messages, many researchers have proposed various trust
management systems [2], [3], [9]-[11] for IoV to detect
malicious or selfish nodes by assigning and evaluating entities
and messages through trust scores.

Among proposed solutions, blockchain and learning ap-
proaches have been employed for robust and adaptive
trust models. Blockchain is a distributed ledger technology
with several properties, such as decentralization, consistency,
tamper-proofing, and transparency, making it suitable for trust
management in IoV [12], [13]. Due to the blockchain’s tamper-
proofing nature, any data tampering attempt made by malicious
nodes is effectively prevented (e.g., intentionally modifying the
trust score of a vehicle). On the other hand, given the highly
dynamic environment of IoV, an accurate assessment of mes-
sages and vehicles’ trustworthiness is a foremost requirement.
Consequently, learning approaches can effectively increase the
accuracy of the trustworthiness computation (e.g., inferring the
trust score of a vehicle based on its vehicular data or broadcast
messages) [8].

Combined with learning approaches, blockchain presents
several advantages and is widely considered to enhance secu-
rity and trust within IoV. However, existing blockchain-based
and Al-integrated trust models prioritize the learning model
capabilities while overlooking the impact of the blockchain’s
performance within their scheme. This emphasis often leads
to insufficient testing and optimization of critical blockchain
performance scalability metrics, including throughput and la-
tency. As a result, the blockchain’s ability to handle large
volumes of transactions and data in real-time scenarios is
compromised, limiting their applicability in IoV [14]. In
addition, existing solutions are heavily relying on learning
approaches to determine trust scores automatically. Although



they have shown promising results, these approaches often
do not capture sufficient features to compute accurate trust
score values for individual nodes, affecting the reliability of
trust assessments, thus leading to a discrepancy between the
computed trust values and the actual trustworthiness of the
nodes [8].

This paper proposes a novel trust management model to
address the above challenges. Its main contributions can be
summarized as follows.

o We leverage HyperLedger Fabric (HLF) for secure and
immutable storage of vehicle trust scores, utilizing its
high throughput and low latency capabilities to ensure
efficient and reliable trust management in dynamic en-
vironments. Our model uses smart contracts to automate
the verification and update of trust scores.

o We use a Random Forest Classifier in our vehicle trust
model for effective misbehavior detection, chosen for its
high accuracy, resilience to overfitting, and capability to
handle complex datasets common in vehicular networks.
This model enables our system to accurately and swiftly
identify malicious or misbehaving vehicles.

e We incorporate the Dempster-Shafer Theory (DST) in
our data trust model to further enhance the credibility
assessment of events from neighboring vehicles. DST
provides a flexible and robust framework for reasoning
under uncertainty, allowing our model to assess the cred-
ibility of events with high precision, even in the presence
of conflicting evidence.

The remainder of this paper is structured as follows. Sec-
tion II reviews the related works. Section III introduces the
overview of the architecture and the threat model. Section
IV presents the trust management model in detail. Section V
discusses the experimental results and analysis in more detail
in Section VI. Finally, Section VII concludes this paper.

II. RELATED WORKS

Various research studies have recently been conducted on
trust management systems in the IoV environment. Many
researchers have already combined blockchain with learning-
based approaches in trust management.

Zhao et al. [5] proposed a trust model using a Gaus-
sian Naive Bayes classifier to detect malicious vehicles and
active detection technology to update trust values through
collaboration between vehicles and RSUs. Their solution em-
ploys a hybrid consensus algorithm that merges Delegated
Proof of Stake with Byzantine Fault Tolerance, aiming to
enhance the efficiency of block generation and updating trust
within the blockchain. HS in [15] proposed a blockchain-
based reputation management system that employs a self-
sovereign digital identity management system using HLF, en-
suring interoperability and privacy through verifiable pseudo-
identities. They propose a 'Proof of Trust’ (PoT) consensus
mechanism, combining Proof of Stake with random leader
election, where RSU grades serve as the stake. Additionally,
Bayesian inference is employed to estimate the truthfulness
of nodes, enabling distributed reputation management within

the network. Zhang et al. [2] proposed a blockchain-based
trust management system that employs a Feedforward Neural
Network to dynamically and automatically assess the trust
scores of vehicles, RSUs, and messages, which does not
rely on a traditional fixed formula. Wang et al. [3] utilize a
public blockchain combined with a fully connected network
(FCN) deep learning model. The system uses a Proof-of-Trust
consensus algorithm to enhance blockchain performance by
prioritizing high-trust vehicles and speeding up data process-
ing. The FCN model, implemented on roadside units (RSUs),
efficiently verifies message authenticity by analyzing vehicle
attributes and historical behavior to detect malicious activities.
Haddaji et al. [16] proposed FBTM, a blockchain-based trust
model combined with Federated Learning (FL), to improve
data quality for model training. The Proof of Reputation
consensus assigns reputation scores to RSUs while motivating
them to generate and aggregate global FL. models.

These solutions address key challenges in trust management
systems by ensuring accurate and efficient trust evaluation,
enhancing security, and promoting participation by integrating
blockchain and learning techniques.

III. ARCHITECTURE OVERVIEW

This section introduces the overall architecture, HLF, and
the threat model adopted in this paper. The network archi-
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Fig. 1. System model

tecture follows a typical IoV network consisting of entities
such as RSUs and vehicles depicted in Fig. 1. The IoV
entities are assumed to perform local data processing and have
storage capabilities. They can communicate wirelessly through
IEEE 802.11p/DSRC. Additionally, RSUs represent nodes that
maintain the blockchain. They verify and evaluate the vehicles’
trust scores.



A. HyperLedger Fabric Network (HLF)

HyperLedger Fabric (HLF) is a permissioned blockchain
platform with a highly configurable architecture for executing,
ordering, and validating transactions. Fig. 1 illustrates the
structure and flow of HLF-enabled IoV, where trust score
updates are managed through the following phases:

« Endorsing Phase: A transaction proposal is generated to
update the trust score of a vehicle. Selected peers execute
the specified smart contract to assess the proposal, pro-
ducing signed responses. These responses are aggregated
into a transaction envelope, along with read-write sets
that capture the state of the ledger before and after the
transaction.

e Ordering Phase: The transaction envelope is submitted to
the ordering service. In our case, we use the Raft con-
sensus mechanism. The ordering service sequences the
transactions, packages them into blocks, and distributes
these blocks to all peers in the network.
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Fig. 2. Trust Management Process

o Validation Phase: Each peer validates the transactions by
verifying the endorsements and ensuring compliance with
endorsement policies. Valid transactions are committed
to the channel ledger, updating the world state. Then,
a commit status is communicated to confirm the ledger
update.

B. Threat Model

In this paper, we assume the vehicles could be vulnerable to
attacks performed by malicious nodes within the network.The

main attacks we considered within our proposed scheme are
as follows:

o Bogus Information Attack: Malicious attackers’ primary
goal is to broadcast false messages. Attackers might flood
the network with an excessive number of false messages,
which can affect the stability and security of the network.
In our trust model in Section IV, the assessment of event
credibility limits malicious vehicles from sending false
messages to the network.

o Bad-Mouthing Attack: Attackers might try to provide
false ratings to messages to promote or discredit other
vehicles. This type of attack could revoke genuine ve-
hicles, disrupting the normal flow within the network.
To avoid such behavior, assessing behavior and events to
derive the final trust score provides fair judgment.

o Tampering Trust Data: Malicious vehicles might attempt
to tamper with trust values to undermine the integrity of
the network. This type of attack could compromise the
reliability of the trust assessments, which can destabilize
the network’s security. To avoid such attacks, we leverage
blockchain in our architecture. Its decentralized and im-
mutable characteristics ensure that tampering with trust
data is nearly impossible.

IV. TRUST MANAGEMENT MODEL

In this section, we present a comprehensive step-by-step
explanation of our proposed trust management model, as
depicted in Fig. 2.

A. Data Trust Model - Event Rating

Let v; be the vehicle broadcasting an event/message £ and
{v1,v2,...,v,} be its neighboring vehicles providing a set of
reports { Ry, R, ..., R, } about the message’s trustworthiness.
Each neighbor vehicle v; provides a report r; € {0, 1}, where
1 indicates that F is trustworthy and O indicates that E is
untrustworthy. Each vehicle v; also has a trust score ¢; € [0, 1],
which represents its reliability.

DST is used to compute and aggregate the reports from all
the neighboring vehicles. From this, DST includes a frame of
discernment 6 containing two elements, namely © = {7, T'}.
T indicates that E is trustworthy. T indicates that E is
untrustworthy. Hence, there are three propositions:

H ={T} (F is trustworthy) (D
H ={T} (FE is untrustworthy) 2)
U= {T,T} (F is trustworthy or untrustworthy) (3)

For vehicle v;, the basic probability assignment is adjusted
based on its report and trust score as follows:

mj(H) :tj "I’j (4)
m;(H) =t;-(1-r;) &)
my(U)=1—t, ©6)



If the RSU receives k event rating reports on vehicle v;, to
combine the evidence from all neighboring vehicles, Demp-
ster’s rule of combination is used whereby the trustworthiness
of the I is defined by the belief function as follows:

Bel(H) = m(H) = @j_;m;(H) (7)

In this case, the received reports k from the set of neighbors
is calculated from:

Further, using the Dempster’s rule of combination to combine
the trustworthiness is given by:
k
ZHlﬂHzﬂ---ﬂHj:H Hj:l m;(H)
m(H) = k
1- ZHmHzm--nHj:w Hj:l m;(H)

In this paper, we assumed that if Bel(H) > Bel(H), the

event E is considered trustworthy, while Bel(H) < Bel(H),
the event F is considered untrustworthy.

€))

B. Vehicle Trust Model - Misbehavior Detection

Once the vehicle transmits a message to neighboring ve-
hicles, this module collects the state of the vehicle data in
this step to build the behavior feature of the vehicle. Then, it
uses the trained Random Forest classifier to determine whether
the vehicle is misbehaving or genuine. The vehicle behavior
feature is formatted as follows:

X = (pxapyaSxasyavxavyahxahy) (10)

where p represents the position, s the speed, v the acceleration,
h the heading of the vehicle on the x and y axis.

C. Trust Value Computation

Upon receiving the results from the classification from
Random Forest and analysis from DST, the observations will
be fused to form a new trust score. The updated trust value
T,ew for a vehicle is calculated based on its previous trust
value T,ld, the classification results C from the vehicle trust
model, the probability D from the data trust model, and
defined thresholds § and a.

For C' = 0 (Normal Behavior):

Toa+wy it D> a
Thew = Tod + wr 1f[’3<D<OL (11D
Toa+pm if D<p

For C' = 1 (Misbehavior Detected):

Toa+p. ifD>a
Thew =S Toa+pm ifB<D<a (12)
Toa+pu DB

where:

o wy and wy, are weights for increasing trust (high, low).

e DL, PM, Py are penalties for decreasing trust (low, moder-
ate, high).

e « and (3 are high and low thresholds, respectively.

D. Trust Score Storage through HLF

Once the classification and DST analysis results are avail-
able, transactions are proposed on the blockchain, which
triggers the smart contract in the HLF. Algorithm 1 displays
the detailed procedure for updating the trust score function of
the smart contract. In addition, we employ the Raft consensus
algorithm designed for efficiency and scalability, using a
leader-based approach for consensus. Transactions, submitted
as proposals, are automatically routed by the ordering node to
the channel’s current leader. After validation, they are ordered,
packaged into blocks, consented upon, and distributed. These
blocks are then sent to committing peer nodes for validation
and recorded in the ledger. These processes align with the
second and third phases of our transaction flow, ensuring the
system can quickly and reliably update trust values while
maintaining security and integrity.

Algorithm 1 Update Trust Score

Require: Vehicle ID ¢d, Trust Score tscore

Ensure: Update the trust score of the vehicle with ID 4d in
the ledger

1: Check if the vehicle with ID id exists in the system

2: if vehicle does not exist then

3:  return “The vehicle with ID 4d does not exist”

4: end if

5. Update the vehicle record with the new trust score

6: Store the updated vehicle record in the ledger

7: if storing fails then

8: return “Failed to update the vehicle’s trust score in
the ledger”

9: end if

10: return “Trust score updated successfully”

V. EXPERIMENTATION & RESULTS
A. Experimental Setup

To evaluate the feasibility of our proposed solution, we im-
plemented the HLF blockchain network on a virtual machine
with a 2.50-Ghz Intel Core i5-12400 processor, 32 GB 3200-
MHz DDR4 RAM, and Ubuntu-22.04.4 LTS(64-bit), which
consists of 4 ordering nodes and 5 peer nodes. The smart
contract was developed using the Go language and deployed
on HLF. Hyperledger Caliper was used to measure the per-
formance of our blockchain implementation. The vehicular
simulation and misbehavior detection were conducted using
Python.

To train and test our random forest model, we used the
VeReMi extension dataset [17]. The VeReMi dataset comprises
various position and speed malfunctions as well as attacks.
This dataset is generated using VEINS, based on the OM-
NET++ network simulator and the SUMO road traffic simula-
tor. The dataset utilizes vehicle traces from a subsection of the
Luxembourg SUMO Traffic (LuST) scenario, with an area size
of 1.61 km? and a vehicle density of 67.4 vehicles/km?. The
dataset was further processed and formatted to fit our machine



learning model. The source code for our implementation can
be found in our GitHub repository [18].

B. Experimental Results & Analysis

To test the efficacy of our machine learning model in
detecting misbehaving vehicles, the analysis was carried out on
different network sizes and proportions of malicious vehicles.
We evaluated the performance of the model in networks
of 100, 200, and 400 vehicles with varying percentages of
malicious vehicles: 20%, 30%, and 50%. The primary metric
for evaluating model performance was the True Positive Rate
(TPR), which shows the proportion of correctly predicted mali-
cious vehicles to the total number of actual malicious vehicles.
As shown in Fig. 3, we can see that the model performs
well in scenarios where the proportion of malicious vehicles
exceeds 50% across all network sizes. This suggests that the
model is particularly effective when malicious behavior is
more prevalent.
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To validate the efficacy of our trust model (integrated
scheme using DST and Random Forest Classifier), we also
simulate the change in average trust scores over a time span
of 200 units. During each time span, we assumed that 10
distinct events occurred, and for each event, 5 neighboring
vehicles evaluated the broadcasting vehicle’s message. The
simulation involved a network of 400 vehicles subjected to
varying ratios of malicious vehicles: 20%, 30%, and 50%. The
initial trust score of each vehicle is set between 0.7 to 0.8. The
weight parameters used for the final trust computation function
are described in Table I. As shown in Fig. 4, the simulation
outcomes demonstrate the trust scores for genuine vehicles
remained high and stable, indicating the system’s accuracy in
preserving the reputation of genuine vehicles. In the case of
malicious vehicles spreading false messages, their trust scores
consistently decrease over time, reflecting the model’s ability
to detect and penalize malicious vehicles.
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To assess the scalability of the blockchain network, we eval-
uated two key performance metrics: latency and throughput.
These were measured across four different batch sizes (100,
200, 300, 500) and transaction arrival rates ranging from 500
to 2000 transactions per second. During this experiment, due
to the limitation of our computer, we limited the number
of vehicles accessing the blockchain to 20. As shown in
Fig. 5, smaller batch sizes result in higher latency as more
transactions are processed progressively. This is likely due to
the increased complexity and time required to validate larger
batches of transactions. As for the throughput depicted in Fig.
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Fig. 5. Change of average trust scores under different ratio of malicious
vehicles

6, we can see that the throughput consistently rises with the
batch size, which illustrates that the blockchain can handle
more transactions as batch size increases and transaction
rates are higher. This suggests the blockchain network may



work efficiently with 600 transactions per second and below.
Although the ability of the blockchain to maintain increased
throughput with larger batch sizes and higher transaction rates
indicates good scalability, it is necessary to find an optimal
batch size with quick response time despite a slight reduction
in throughput.
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VI. CONCLUSION & FUTURE WORKS

In this paper, we proposed a novel trust management model
for ToV. By leveraging HLF’s performance and scalability,
our approach addresses the limitations of existing blockchain-
based models, ensuring timely and secure data processing
critical for the IoV environment. This proposed model in-
tegrates a vehicle trust model, employing a random forest
classifier for effective misbehavior detection, and a data trust
model, utilizing DST for event credibility evaluation. This dual
approach provides a comprehensive measure of trustworthiness
by integrating the results of classification and DST analysis,
thereby overcoming the limitations of previous models that
rely solely on learning algorithms. This model effectively
captures essential features to compute accurate trust scores,
aligning the computed values more closely with the actual
trustworthiness of nodes and enhancing the reliability of trust
assessments in the IoV environment. Future research will
enhance the model’s accuracy and efficiency of trust assess-
ments through additional learning techniques, particularly in
dynamic and heterogeneous IoV environments with extensive
model support for more complex scenarios. Further testing
and optimization of the HLF network in large-scale scenarios
could further demonstrate and validate its performance under
varying traffic conditions.
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