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Abstract—With the significant increase in demand for future 
6G communication networks, higher requirements are being 
put forward for current communication systems. This paper 
proposes an unsupervised learning method based on GNN for 
optimizing the beamforming matrix in multi-user large-scale 
MIMO systems. By using the channel matrix as input, we aim to 
maximize the overall system transmit rate under power 
constraints. This paper constructs graph structure of a multi-
user MIMO system and designs the corresponding GNN model. 
The optimization of the beamforming matrix is achieved by 
introducing a loss function and penalty terms. Simulation 
results show that compared with existing algorithms, the 
proposed GNN optimization method demonstrates superior 
performance under different conditions of user numbers, BS 
antenna numbers, and SNR. Especially in large-scale user 
scenarios, the performance improvement of the GNN 
optimization method is particularly significant, with a 
performance ratio up to 131.2% compared to the MMSE 
method.  
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I. INTRODUCTION 
With the noticeable increasing demand for the future 6G 
communication networks, especially the explosive growth in 
the number of terminal devices, more demanding 
requirements are being put forward to current communication 
system. Combining beamforming technique with the Massive 
multiple-input multiple-output (MIMO) allows to adjust the 
amplitude and phase of the transmitted signal, and orient the 
antenna to radiate towards the target device [1], [2]. As one 
of the feasible ways to achieve the peak rate, low time delay 
and high reliability of 6G, beamforming design in multi-user 
wireless communication networks, researchers have 
conducted extensive exploration and in-depth discussion on 
this technique. To meet the demand for Quality of Service 
(QOS), in [3], authors investigated the optimization 
algorithms for joint user scheduling and beamforming based 
on zero-forcing beamforming (ZFBF) and continuous convex 
approximation respectively. Over recent years, with the 
deepening of research, deep neural network is considered to 
be an effective tool for 6G network to realize wireless 
communication network intelligence [4]. Graph Neural 
Network (GNN) represent a class of deep learning (DL) 
techniques that are particularly adept at handling data with 
graph-like structures. The applicability of GNN to the multi-
path routing challenges in satellite networks has been 
substantiated by researchers [5]. Building on the remarkable 
success of GNN, they have been employed to enhance the 
design of multi-antenna beamforming, aiming to optimize the 

performance of Reconfigurable Intelligent Surfaces (RIS) 
[6]. In a recent study [7], the authors introduced a GNN-based 
framework known as the complex residual graph attention 
network, designed to maximize the total rate in multi-user 
multi-input single-output (MU-MISO) systems. The efficacy 
of GNN-based approaches in addressing optimization 
problems within the realm of multi-user wireless 
communications has been demonstrated in a series of studies 
[8]–[11]. 
In this work, an unsupervised learning method employing 
GNN to optimize the beamforming matrix based on the 
channel matrix derived from channel estimation is proposed. 
To satisfy the QoS requirements, this study leverages 
historical network data, treats the receiving and transmitting 
antennas as edge nodes, and employs a neural network to 
identify the optimal solution for maximizing overall system 
throughput while adhering to transmit power constraints. 

The remainder of the paper is organized as follows. In 
section II, a brief introduction to the system model is given 
while the GNN layers and model we propose are presented in 
section III. Building upon this, the subsequent section will 
present a demonstration of the simulation results and a brief 
analysis of the result. Finally, section V elucidates the 
conclusion of this work. 

II. SYSTEM MODEL 
A multi user massive MIMO downlink system with single 

base station (BS) and M  user equipment (UE) is considered 
in this research. BS and the UEs have tN  and rN  antennas 
respectively, each antenna can undertake the task of 
transmitting and receiving separately. Denote t

iN  and , 
r
j kN  

as the i-th transmit antenna of BS and j-th receive antenna of 
k-th user. Let ,  {1,  ,  }r tN N

kH k M×∈ ∈   represent the 
channel matrix between BS and k-th user, 

S ,  {1,  ,  }k tN
kW k M×∈ ∈   represent the beamforming 



matrix of BS to k-th user.  Additionaly, here 𝑆𝑆𝑘𝑘 represents the 
spatial streams of BS. 

Fig. 1 illustrates the schematic diagram of the antenna 
array within a Multiple-Input Multiple-Output (MIMO) 

system, with , i jh  representing the channel coefficient 
associated with the respective antennas. Account for an 
Additive White Gaussian Noise (AWGN) channel, assign kx  
as signal vector transmitted by BS, then the signal vector 
received by UEs can be expressed as follows: 

,
y [ ] [ ]H H

k k k k k k k k j j k
j k j k

U H W x n U H W x n
≠ ∈

= + + +∑            (1) 

Here 2(0,  )k kn σ∈  symbolizes the white gaussian 

noise, and r kN S
kU ×∈  denotes to the normalized receiver of 

k-th user. Without taking interference between users into 
account, yk  could be expressed as (2): 

 y [ ]H
k k k k k kU H W x n= +   (2) 

Then, the achievable data transmit rate at the k-th user is 
expressed as (3): 
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To streamline the processes, only take the first space 
stream of user into consideration. The optimization object of 
this work is transmitting rate. The optimizing task could be 
described as follows: 
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Addressing the complexity of rate calculation formulas is 
inherently challenging due to their non-convex nature, which 
is further complicated by the non-convex constraints as 
indicated in term (4b). The presence of a potentially infinite 
number of local optima within the feasible solution space 
renders the task of algorithmically determining a global 
optimum computationally daunting, often with complexity 
that scales exponentially. Traditional approaches, such as the 
WMMSE algorithm or the Max-SNR algorithm, are 
burdened by significant computational demands. 

To address the need for low computational latency and to 

leverage historical network data effectively, this paper 
introduces a Graph Neural Network (GNN) based 
beamforming optimization method. By integrating a penalty 
function into the total loss function and initializing the 
network with random weight and bias vectors, the proposed 
GNN method has demonstrated impressive performance in 
simulations, striking a balance between computational 
efficiency and optimization accuracy.  

III. GNN MODEL 

A. Graph Information Construction 
This subsection introduces how the structure of multi-user 

MIMO system is turned into a graph. Provided with M users, and 
K Spatial Stream for each user, as previously described, all 

actual users are converted into 
1

M K

i
i

S
=
∑


 virtual users. Each UE is 

equipped with rN  receiving antennas, while BS is furnished 
with tN  transmitting antennas. The channel matrix is utilized as 
the adjacency matrix in our model, where each antenna is 
represented as a node, and each communication link between the 
antennas is denoted as an edge. This configuration effectively 
constructs a graph-based representation of the multi-antenna 
wireless communication network, as depicted in Fig. 2. 

B. GNN Layers and Loss Function 
To achieve higher transmission rates and reduce 

computational complexity, we introduce a beamforming 
optimization technique leveraging a Graph Neural Network 
(GNN) algorithm. The process begins by consolidating and 
reshaping the beamforming matrix ,  {1,  ,  }kW k M∈   into a 
vector form 0v . This vector serves as the parameter set that is 
subject to updates. Concurrently, the input features from the 
antenna nodes are fed into the GNN model. Subsequently, the 
GNN model, equipped with L fully connected layers, is trained. 
We utilize the notation ,  {0,  ,  }lv l L∈   to represent the input 
vector for each layer, facilitating a structured and efficient 
optimization approach. The mapping function is characterized 
as:  

 ( ) Re LU( )l
G l l l lf v W v bias= +    (5) 

Here lW  and lbias  refers to the weight and bias vector of the 
l-th layer, respectively. Nonlinear activation function is set to 
ReLU, which is widely used in the training of neural network. 

To realize the optimizing target, we designed a loss function 
based on penalty method. In this approach, the user's rate 
requirement constraint is embedded directly into the loss 
function as a penalty term. The loss function is presented as 
follows: 

 
Fig. 1. Antenna framework of MIMO system 

Fig. 2. Graphical representation of a MIMO system 
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Here λ 1 and λ 2 indicates the coefficients of each part in the 
loss function, respectively. Employ bound term bP  as the early 
stop function, GNN method can traverse the feasible domain of 
the constraint term and find the global optimal solution. 

IV. SIMULATION RESULTS 
In this study, we focus on a multi-user MIMO system, 

adhering to the parameter configurations outlined in Table 1. 
The interference range of BS is set to 300 meters, UEs are 
randomly located in the cell. The channel model is derived 
from the 3GPP TR 38.901 specification, version 16.1.0 
Release 16, with 1000 channel samples generated for each 
scenario to ensure consistency. These identical channel 
samples were utilized in both the Max-SNR and MMSE 
method simulations. Additionally, the sampling rate and 
carrier frequency employed in our work are set at 100 MHz 
and 2600 MHz, respectively.   

In order to verify the effectiveness and reliability of GNN 
method we proposed, maximum signal-to-noise ratio (Max-
SNR) and minimum mean square error (MMSE) method were 
introduced as the baseline of the simulation. The simulation 
result is shown in the next subsection. 

TABLE I.  SYSTEM DEFAULT PARAMETERS 

System Default Parameters Value 

BS Number ( B ) 1 

BS Transmitting Antenna Number ( tN ) 16 

UE Number ( M ) 8 

UE Receiving Antenna Number ( rN ) 16 

Maximum Transmit Power of BS ( bP ) 20 W 

Noise std ( 0σ ) 1 

A. Different UE Numbers 
Considering the influence of varying UE numbers within 

the system interference range on the outcomes, we categorize 
the UE count into 3 distinct groups: small-scale, medium-
scale and large-scale. The UE numbers are set as 

{ }M 4,  8,  12,  16∈ , { }M 32,  36,  40,  44∈  and 

{ }M 60,  64,  68,  72∈ , other system parameters remain 
consistent with those detailed in Table 1. The results are 
shown as Fig. 3 to Fig. 5.   

 

  

 
Fig. 3. Comparison of Transmit Rate Under small-scale UE scenario 

 
Fig. 4. Comparison of Transmit Rate Under medium-scale UE scenario 

 
Fig. 5. Comparison of Transmit Rate Under large-scale UE scenario 

 



As illustrated in the figures, the average performance and 
speed of the three algorithms exhibit an upward trend with the 
increasing number of users; however, the rate of increase 
gradually diminishes as UE numbers rise. The Max-SNR and 
MMSE algorithms yield comparable results, yet the GNN 
method outperforms them.  

In scenarios with a small number of users, the performance 
of the proposed algorithm is comparable to that of the other 
two algorithms. However, in large-scale user scenarios, our 
proposed algorithm demonstrates a significant improvement 
in performance. It is particularly noteworthy that as the 
number of UEs increases, the performance gap between the 
GNN method and the other two algorithms expands, 
culminating in a 35-bit/s/Hz advantage. Specifically, when M 
= 4, the performance ratio of the GNN_BO algorithm to the 
MMSE algorithm is 103.8%. This ratio further increases to 
131.2% when M = 72, highlighting the scalability and 
robustness of the GNN method in handling larger user 
populations. Based on the discussion above, it can be inferred 
that the performance of GNN method exhibits greater 
advantages. This phenomenon is likely to be caused by the 
increase of number of iterations. With the increase of 
iterations, the chance GNN method gets closer to the optimal 
solution raises. 

B. Different BS Transmitting Antenna Numbers 

Given that the number of UE remains constant, this 
subsection compares the impact of varying the number of 
antennas on transmission rates. With other parameters remain 
as Tab.1, set antennas’ number {8,  16,  24,  32}r tN N= ∈ , 
the result is illustrated in the Fig. 6. 

As demonstrated in figure 6, the performance of the three 
algorithms rises with the increase of antenna numbers. Similar 
to the preceding outcome, GNN method performed better in 
each set of antenna number. is important to note that with the 
increase of antenna number, the benefits of GNN method start 
to diminish. This phenomenon may be attributed to the 
increased dimensions of the beamforming matrix, and the 
complexity of object function. With the increase of the 
solution space of the optimization problem, it becomes harder 
for GNN method to meet the optimal solution. 

C. Different BS Transmit SNR 
In this subsection, we simulate the transmit rate across 

varying BS transmit SNR. The BS transmit power is set to a 
constant 20W, and the noise power levels are examined at 

2 {1  1.33  2  4}σ ∈ ， ，， . The findings are graphically depicted in 
Fig. 7. 

As it depicted in the graphic, GNN method demonstrates 
the most superior performance of all the algorithms. Different 
SNR settings had few effects on the rate gap between the 
algorithms. When SNR is set to 20dB, the ratio between GNN 
method and MMSE method is 95.8% and the ratio goes down 
to 93.6% when SNR drops to 5dB. Without losing generality, 
the channel conditions become better with the increase of SNR, 
and the results of both algorithms increase with the increase 
of SNR. 

CONCLUSION 
In this paper, an unsupervised learning method based on 

graph neural networks (GNN) is proposed for optimizing 
beamforming matrices in multi-user MIMO systems. By 
constructing the graph structure of multi-user MIMO system 
and designing the corresponding GNN model, this research 
successfully transforms the multi-antenna wireless 
communication network into the graph representation. On this 
basis, the optimization of beamforming matrix is realized by 
introducing loss function and penalty term. The simulation 
results show that compared with the existing Max-SNR and 
MMSE methods, the proposed GNN optimization method 
shows better performance under different conditions of the 
number of users, the number of BS antennas and the SNR. 
Especially in large-scale user scenarios, the performance 
improvement of GNN optimization method is particularly 
significant, compared with MMSE method, the performance 
ratio is up to 131.2%. The results validated the effectiveness 
and reliability of GNN in solving multi-user wireless 
communication optimization problems. In the future work, we 
will explore the application of GNN in more complex 
communication scenarios and further investigate how to 
improve the scalability and adaptability of the algorithm. 
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