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Abstract—With the significant increase in demand for future
6G communication networks, higher requirements are being
put forward for current communication systems. This paper
proposes an unsupervised learning method based on GNN for
optimizing the beamforming matrix in multi-user large-scale
MIMO systems. By using the channel matrix as input, we aim to
maximize the overall system transmit rate under power
constraints. This paper constructs graph structure of a multi-
user MIMO system and designs the corresponding GNN model.
The optimization of the beamforming matrix is achieved by
introducing a loss function and penalty terms. Simulation
results show that compared with existing algorithms, the
proposed GNN optimization method demonstrates superior
performance under different conditions of user numbers, BS
antenna numbers, and SNR. Especially in large-scale user
scenarios, the performance improvement of the GNN
optimization method is particularly significant, with a
performance ratio up to 131.2% compared to the MMSE
method.
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I. INTRODUCTION

With the noticeable increasing demand for the future 6G
communication networks, especially the explosive growth in
the number of terminal devices, more demanding
requirements are being put forward to current communication
system. Combining beamforming technique with the Massive
multiple-input multiple-output (MIMO) allows to adjust the
amplitude and phase of the transmitted signal, and orient the
antenna to radiate towards the target device [1], [2]. As one
of the feasible ways to achieve the peak rate, low time delay
and high reliability of 6G, beamforming design in multi-user
wireless communication networks, researchers have
conducted extensive exploration and in-depth discussion on
this technique. To meet the demand for Quality of Service
(QOS), in [3], authors investigated the optimization
algorithms for joint user scheduling and beamforming based
on zero-forcing beamforming (ZFBF) and continuous convex
approximation respectively. Over recent years, with the
deepening of research, deep neural network is considered to
be an effective tool for 6G network to realize wireless
communication network intelligence [4]. Graph Neural
Network (GNN) represent a class of deep learning (DL)
techniques that are particularly adept at handling data with
graph-like structures. The applicability of GNN to the multi-
path routing challenges in satellite networks has been
substantiated by researchers [5]. Building on the remarkable
success of GNN, they have been employed to enhance the
design of multi-antenna beamforming, aiming to optimize the

performance of Reconfigurable Intelligent Surfaces (RIS)
[6]. In a recent study [7], the authors introduced a GNN-based
framework known as the complex residual graph attention
network, designed to maximize the total rate in multi-user
multi-input single-output (MU-MISO) systems. The efficacy
of GNN-based approaches in addressing optimization
problems within the realm of multi-user wireless
communications has been demonstrated in a series of studies
(8] - [11].
In this work, an unsupervised learning method employing
GNN to optimize the beamforming matrix based on the
channel matrix derived from channel estimation is proposed.
To satisfy the QoS requirements, this study leverages
historical network data, treats the receiving and transmitting
antennas as edge nodes, and employs a neural network to
identify the optimal solution for maximizing overall system
throughput while adhering to transmit power constraints.
The remainder of the paper is organized as follows. In
section II, a brief introduction to the system model is given
while the GNN layers and model we propose are presented in
section III. Building upon this, the subsequent section will
present a demonstration of the simulation results and a brief
analysis of the result. Finally, section V elucidates the
conclusion of this work.

II. SYSTEM MODEL

A multi user massive MIMO downlink system with single
base station (BS) and M user equipment (UE) is considered
in this research. BS and the UEs have N, and N, antennas

respectively, each antenna can undertake the task of
transmitting and receiving separately. Denote N/ and N ok
as the i-th transmit antenna of BS and j-th receive antenna of
k-th user. Let H, e C""™ ke{l, ---, M} represent the
between BS and  -th
W, eC*" kefl, -, M} represent the beamforming

channel  matrix user,



matrix of BS to k-th user. Additionaly, here S, represents the
spatial streams of BS.

Fig. 1 illustrates the schematic diagram of the antenna
array within a Multiple-Input Multiple-Output (MIMO)

Fig. 1. Antenna framework of MIMO system

system, with &, representing the channel coefficient

associated with the respective antennas. Account for an
Additive White Gaussian Noise (AWGN) channel, assign x,
as signal vector transmitted by BS, then the signal vector
received by UEs can be expressed as follows:
v, = U/ TH W,x, +n,]+ ;kU,fI[HkVI’jxj +m] (1
J#ER,JE

Here n, e N(0, 6;) symbolizes the white gaussian

. N xS, . .
noise, and U, € C""* denotes to the normalized receiver of

k-th user. Without taking interference between users into
account, y, could be expressed as (2):
Yie = UkH (AW, x, +n] (2)

Then, the achievable data transmit rate at the k-th user is
expressed as (3):

H 2
i H W]
R,(7,) = log, (1+— ———1— 3)
Ul H W[ +o;

To streamline the processes, only take the first space
stream of user into consideration. The optimization object of
this work is transmitting rate. The optimizing task could be
described as follows:

g}?’awi(}];ch ) (4a)
s.t. n <R, VkeK, (4b)
AR (4c)
kel
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Addressing the complexity of rate calculation formulas is
inherently challenging due to their non-convex nature, which
is further complicated by the non-convex constraints as
indicated in term (4b). The presence of a potentially infinite
number of local optima within the feasible solution space
renders the task of algorithmically determining a global
optimum computationally daunting, often with complexity
that scales exponentially. Traditional approaches, such as the
WMMSE algorithm or the Max-SNR algorithm, are
burdened by significant computational demands.

To address the need for low computational latency and to

leverage historical network data effectively, this paper
introduces a Graph Neural Network (GNN) based
beamforming optimization method. By integrating a penalty
function into the total loss function and initializing the
network with random weight and bias vectors, the proposed
GNN method has demonstrated impressive performance in
simulations, striking a balance between computational
efficiency and optimization accuracy.

III. GNN MODEL

A. Graph Information Construction

This subsection introduces how the structure of multi-user
MIMO system is turned into a graph. Provided with M users, and

K Spatial Stream for each user, as previously described, all
M<K

actual users are converted into Z S, virtual users. Each UE is
i=1

equipped with N, receiving antennas, while BS is furnished

with N, transmitting antennas. The channel matrix is utilized as
the adjacency matrix in our model, where each antenna is
represented as a node, and each communication link between the
antennas is denoted as an edge. This configuration effectively
constructs a graph-based representation of the multi-antenna
wireless communication network, as depicted in Fig. 2.
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Fig. 2. Graphical representation of a MIMO system

B. GNN Layers and Loss Function

To achieve higher transmission rates and reduce
computational complexity, we introduce a beamforming
optimization technique leveraging a Graph Neural Network
(GNN) algorithm. The process begins by consolidating and
reshaping the beamforming matrix W,, k€ {l, ---, M} into a

vector form v, . This vector serves as the parameter set that is

subject to updates. Concurrently, the input features from the
antenna nodes are fed into the GNN model. Subsequently, the
GNN model, equipped with L fully connected layers, is trained.
We utilize the notation v,, / € {0, ---, L} to represent the input

vector for each layer, facilitating a structured and efficient

optimization approach. The mapping function is characterized
as:

fi(v) =ReLUW,v, +bias,) %)

Here W, and bias, refers to the weight and bias vector of the

I-th layer, respectively. Nonlinear activation function is set to
ReL U, which is widely used in the training of neural network.

To realize the optimizing target, we designed a loss function
based on penalty method. In this approach, the user's rate
requirement constraint is embedded directly into the loss
function as a penalty term. The loss function is presented as
follows:



Ly (0) = =4 2 R (W, 10)+ 2, ReLU(E, = W [L) - (6)

Comparison of Transmit Rate

Here A and A , indicates the coefficients of each part in the = vl
loss function, respectively. Employ bound term P, as the early .
stop function, GNN method can traverse the feasible domain of 830
the constraint term and find the global optimal solution. %
220
IV. SIMULATION RESULTS =
In this study, we focus on a multi-user MIMO system, 10
adhering to the parameter configurations outlined in Table 1.
The interference range of BS is set to 300 meters, UEs are 0 " . " T
randomly located in the cell. The channel model is derived Number of UE

from the 3GPP TR 38.901 specification, version 16.1.0
Release 16, with 1000 channel samples generated for each
scenario to ensure consistency. These identical channel . .
samples were utilized in both the Max-SNR and MMSE Comparison of Transmit Rate
method simulations. Additionally, the sampling rate and et

s MMSE
carrier frequency employed in our work are set at 100 MHz = GNN
and 2600 MHz, respectively.
In order to verify the effectiveness and reliability of GNN _
method we proposed, maximum signal-to-noise ratio (Max-
SNR) and minimum mean square error (MMSE) method were
introduced as the baseline of the simulation. The simulation
result is shown in the next subsection.
0
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TABLE 1. SYSTEM DEFAULT PARAMETERS

Fig. 3. Comparison of Transmit Rate Under small-scale UE scenario
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System Default Parameters Value Fig. 4. Comparison of Transmit Rate Under medium-scale UE scenario
BS Number ( B) 1
BS Transmitting Antenna Number ( V. ) 16 Comparison of Transmit Rate

Max-snr

UE Number (M ) 8 80 = :34:145E

UE Receiving Antenna Number ( N, ) 16

Maximum Transmit Power of BS ( Pb ) 20 W ;

Noise std (07) 1
A. Different UE Numbers 20

Considering the influence of varying UE numbers within
0
60 64 68 72

the system interference range on the outcomes, we categorize
the UE count into 3 distinct groups: small-scale, medium-
scale and large-scale. The UE numbers are set as Fig. 5. Comparison of Transmit Rate Under large-scale UE scenario

Me{4,8, 12,16} ,  Me{32, 36 40,44}  and
M e {60, 64, 68, 72} , other system parameters remain
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consistent with those detailed in Table 1. The results are
shown as Fig. 3 to Fig. 5.



As illustrated in the figures, the average performance and
speed of the three algorithms exhibit an upward trend with the
increasing number of users; however, the rate of increase
gradually diminishes as UE numbers rise. The Max-SNR and
MMSE algorithms yield comparable results, yet the GNN
method outperforms them.

In scenarios with a small number of users, the performance
of the proposed algorithm is comparable to that of the other
two algorithms. However, in large-scale user scenarios, our
proposed algorithm demonstrates a significant improvement
in performance. It is particularly noteworthy that as the
number of UEs increases, the performance gap between the
GNN method and the other two algorithms expands,
culminating in a 35-bit/s/Hz advantage. Specifically, when M
= 4, the performance ratio of the GNN_BO algorithm to the
MMSE algorithm is 103.8%. This ratio further increases to
131.2% when M = 72, highlighting the scalability and
robustness of the GNN method in handling larger user
populations. Based on the discussion above, it can be inferred
that the performance of GNN method exhibits greater
advantages. This phenomenon is likely to be caused by the
increase of number of iterations. With the increase of
iterations, the chance GNN method gets closer to the optimal
solution raises.

B. Different BS Transmitting Antenna Numbers
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Fig. 7: Comparison of Transmit Rate Under Different Antenna
Numbers

Given that the number of UE remains constant, this
subsection compares the impact of varying the number of
antennas on transmission rates. With other parameters remain
as Tab.1, set antennas’ number N, =N, € {8, 16, 24, 32},

the result is illustrated in the Fig. 6.

As demonstrated in figure 6, the performance of the three
algorithms rises with the increase of antenna numbers. Similar
to the preceding outcome, GNN method performed better in
each set of antenna number. is important to note that with the
increase of antenna number, the benefits of GNN method start
to diminish. This phenomenon may be attributed to the
increased dimensions of the beamforming matrix, and the
complexity of object function. With the increase of the
solution space of the optimization problem, it becomes harder
for GNN method to meet the optimal solution.

C. Different BS Transmit SNR

In this subsection, we simulate the transmit rate across
varying BS transmit SNR. The BS transmit power is set to a
constant 20W, and the noise power levels are examined at

o’ €{1,1.33, 2, 4} . The findings are graphically depicted in
Fig. 7.
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Fig. 6: Comparison of Transmit Rate Under Different BS Transmit
SNR

As it depicted in the graphic, GNN method demonstrates
the most superior performance of all the algorithms. Different
SNR settings had few effects on the rate gap between the
algorithms. When SNR is set to 20dB, the ratio between GNN
method and MMSE method is 95.8% and the ratio goes down
to 93.6% when SNR drops to 5dB. Without losing generality,
the channel conditions become better with the increase of SNR,
and the results of both algorithms increase with the increase
of SNR.

CONCLUSION

In this paper, an unsupervised learning method based on
graph neural networks (GNN) is proposed for optimizing
beamforming matrices in multi-user MIMO systems. By
constructing the graph structure of multi-user MIMO system
and designing the corresponding GNN model, this research
successfully  transforms the multi-antenna  wireless
communication network into the graph representation. On this
basis, the optimization of beamforming matrix is realized by
introducing loss function and penalty term. The simulation
results show that compared with the existing Max-SNR and
MMSE methods, the proposed GNN optimization method
shows better performance under different conditions of the
number of users, the number of BS antennas and the SNR.
Especially in large-scale user scenarios, the performance
improvement of GNN optimization method is particularly
significant, compared with MMSE method, the performance
ratio is up to 131.2%. The results validated the effectiveness
and reliability of GNN in solving multi-user wireless
communication optimization problems. In the future work, we
will explore the application of GNN in more complex
communication scenarios and further investigate how to
improve the scalability and adaptability of the algorithm.
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