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Abstract—This paper introduces BemaGANv2, an advanced
model built upon the BemaGAN architecture. BemaGANv2 en-
hances the Generator and extends the discriminator framework
to more effectively capture long-term audio dependencies and
periodicity. By applying the Snake function as the activation
function in the Generator, the model improves its ability to
handle audio extrapolation and periodicity. Additionally, the
envelope extraction method in the MED has been refined, and the
combination of the discriminator in the existing BemaGAN has
been changed from the MED+MPD to the MED+MRD structure.
Experiments with various discriminator combinations, including
MSD+MED, MSD+MRD, and MPD+MED+MRD, validate the
effectiveness of BemaGANv2. The final BemaGANv2 model
serves as a vocoder in Text-to-Audio (TTA) or Text-to-Music
(TTM) tasks to restore the original audio, aiming to enhance
the fidelity and perceptual quality of generated long-term audio.
Experimental results demonstrate that BemaGANv2 outperforms
the previous model in both objective and subjective evaluation
metrics, making it more suitable for long-term audio generation.

Index Terms—Artificial Intelligence (AI), Bespoke envelope
multi-discriminator adaptive GAN (BemaGAN), Multi-Period
Discriminator (MPD), Multi-Scale Discriminator (MSD), Multi-
Envelope Discriminator (MED), Multi-spectrogram Resolution
Discriminator (MRD)

I. INTRODUCTION

Recently, deep learning-based Text-to-Audio (TTA) and
Text-to-Music (TTM) models have garnered significant atten-
tion in the field of AI music generation. A critical component
in generating audio signals in Diffusion-based TTA and TTM
models is the vocoder, which is responsible for converting
intermediate representations, such as Mel-Spectrograms, into
actual audio signals.

In this study, we develop and enhance a unique vocoder
model named BemaGAN to optimize the performance of TTM
models. The original BemaGAN, inspired by the HiFi-GAN
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structure, replaces the Multi-Scale Discriminator (MSD) with
a Multi-Scale Envelope Discriminator (MED). The MED is
designed to more sensitively detect the periodicity in audio,
thereby improving both the fidelity and perceptual quality of
long-term generated audio [1].

Although the initial version of BemaGAN demonstrated su-
perior performance over HiFi-GAN, indicating its potential as
a vocoder for TTA and TTM models, our study goes further by
introducing BemaGANv2 to further enhance its performance.
BemaGANv2 incorporates a new activation function, the snake
function—previously utilized in BigVGAN—to improve the
generator’s ability to extrapolate periodicity [2]. Additionally,
the frequency range has been extended from 8 kHz to 12
kHz, with the sampling rate adjusted to 24 kHz, in accordance
with the Nyquist sampling theorem. The model’s performance
is further improved by increasing the number of envelope
features extracted from the original MED structure and by
replacing the Multi-Period Discriminator (MPD) with a Multi-
Resolution Discriminator (MRD). These enhancements lead to
improved performance across various objective and subjective
metrics.

In this paper, we compare the performance of BemaGANv2
with existing models and different discriminator combinations,
validating the efficacy of the MED and MRD combination
through various evaluation metrics and experiments. We dis-
cuss the advantages of BemaGANv2 as a vocoder for TTA
and TTM models and its broader applicability. The LJ Speech
dataset was used for model training, with tests conducted using
data randomly downloaded from freesound.org. All training
and experiments were performed in a CUDA environment
using the A100 GPU provided by Colab.



II. MODELS

A. Generator with Snake Function

The existing BemaGAN Generator adopts the structure of
HiFi-GAN. In BemaGANv2, the snake activation function,
originally used in BigVGAN, is introduced as a key differ-
entiating factor. The equation for the snake function is given
as follows:

fα(x) = x+
1

α
sin2(αx) (1)

Here, α is a learnable parameter that controls the periodic
components and frequency of the signal. This sine-based
function introduces an inductive bias that enables the model
to better learn and generate periodic characteristics in audio
[3]. The snake function is specifically designed to enhance
the model’s extrapolation ability and capture periodicity more
accurately. By integrating this function into the Generator,
BemaGANv2 is able to generate more refined audio signals,
effectively learning and reproducing subtle acoustic features
that are often challenging for traditional activation functions
to capture.

Fig. 1. Schematic diagram of BemaGANv2 generator. A structure that applies
the snake function as an activation function to the multi-receptive field fusion
(MRF) module in the generator structure of HiFi-GAN. [4]

B. Multi-Envelope Discriminator, MED

The MED is designed to extract various envelope features
from audio signals and consists of five envelope extractors
and a 1-Dimensional Convolutional Neural Network (CNN)
[1]. During the preprocessing stage, the MED extracts the
envelopes of the audio data. In the original BemaGAN, only
the upper and lower envelopes were extracted. However, in
BemaGANv2, additional low-pass filters at 300Hz and 500Hz
are applied to capture the upper and lower envelope features
at different cutoff frequencies.

These extracted envelopes are then processed through seven
1-D CNN layers, where various features of the audio signal
are further extracted. These features are used to update the

loss function, guiding the model to minimize the loss during
training. Ultimately, these features and the refined loss func-
tion are used to evaluate the similarity between the original
and restored audio.

C. BemaGANv2 Structure

Fig. 2 illustrates the overall structure of BemaGANv2.
Based on the experimental results of this study, BemaGANv2
incorporates the MED and MRD discriminator structures.
These two discriminators, along with the generator, are up-
dated and trained in a complementary manner to minimize
the loss.

Fig. 2. Overall structure of BemaGANv2

III. EXPERIMENT WITH COMBINATIONS OF
DISCRIMINATORS

In this section, we compare various combinations of dis-
criminators using multiple evaluation metrics and visual
analyses to verify the validity of the discriminator com-
bination in BemaGANv2. We experimented with combina-
tions from HiFi-GAN, BigVGAN, BemaGAN, and Bema-
GANv2, as well as specific combinations like MSD+MED
and MSD+MRD. Additionally, we explored combinations in-
volving three or more discriminators, presenting experimental
results for the MED+MPD+MRD combination. Other combi-
nations are omitted for reasons discussed later. Notably, all
experimental models, except HiFi-GAN, utilized the snake
function.

For this study, we employed four objective evaluation met-
rics and two subjective evaluation metrics.

A. Objective Evaluation Metrics

The objective evaluation metrics used in this study measure
various distances between the ground truth and the restored
audio. In the formulas, G and R represent Ground Truth and
Restored audio, respectively. The metrics and their descrip-
tions are as follows:

• FAD (Fréchet Audio Distance) - This metric is used to
evaluate the quality of audio signals by measuring the
difference in the distribution between two audio signals.
[5]

• SSIM (Structural Similarity Index Measure) - In this
paper, this metric evaluates the structural similarity of



the Mel-Spectrogram image between the Ground Truth
and the restored audio. The SSIM is calculated for the
three RGB channels, and the average value is taken. [6]

• PLCC (Pearson Linear Correlation Coefficient) - This
statistical index measures the linear correlation between
two variables. In this paper, it indicates how well the
restoration preserves the frequency domain characteris-
tics. [7]

• MCD (Mel Cepstral Distortion) - This metric evaluates
the distortion between two audio signals by calculating
the difference in Mel-Frequency Cepstral Coefficients
(MFCC) using dynamic time warping (DTW). [8]

FAD = ∥µG − µR∥2 + Tr
(
ΣG +ΣR − 2

√
ΣGΣR

)
(2)

SSIMtotal =
1

3

3∑
i=1

SSIM
(

MelSpec(i)G ,MelSpec(i)R

)
(3)
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√
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B. Subjective Evaluation Metrics

For subjective evaluation, we conducted a Mean Opinion
Score (MOS) evaluation for each discriminator combination
and a Similarity MOS (SMOS) evaluation targeting prominent
vocoder models such as HiFi-GAN, BigVGAN, BemaGAN,
and BemaGANv2. The MOS evaluation involved randomly
selected men and women in their 20s, while the SMOS evalu-
ation was conducted with participants knowledgeable in audio
signal processing or music. Both evaluations were carried out
using a 5-point scale, with results presented alongside a 95 %
confidence interval (CI).

In the MOS evaluation, participants listened to samples
generated by the models without being provided with the
Ground Truth, and rated the overall quality. In the SMOS
evaluation, participants first listened to the Ground Truth and
then rated the similarity of the generated sample to this
reference. Both short and long audio samples were evaluated
separately, and a variety of samples were provided to calculate
an average score. To ensure fairness, the specific model from
which each sample was generated was not disclosed to the
participants.

C. Result

For short-term audio, HiFi-GAN still outperforms other
models. This is because Leaky ReLU, used in HiFi-GAN, is a
more suitable activation function than the Snake function for
short-term audio, where periodicity is less prominent.

In long-term audio, BemaGANv2 outperforms other models
in all objective metrics except SSIM. The lower SSIM score

TABLE I
SHORT TERM AUDIO OBJECTIVE METRICS

Models FAD ↓ SSIM ↑ PLCC ∼ 1 MCD ↓
HiFi-GAN 9.86 0.81 0.995 0.52
BigVGAN 7.84 0.79 0.989 0.92
BemaGAN 8.21 0.78 0.983 0.96
BemaGANv2 12.88 0.78 0.994 0.62
MSD + MED 15.00 0.68 0.985 0.92
MSD + MRD 13.67 0.65 0.975 0.99
MED + MPD + MRD 14.84 0.72 0.983 0.82

TABLE II
LONG TERM AUDIO OBJECTIVE METRICS

Models FAD ↓ SSIM ↑ PLCC ∼ 1 MCD ↓
HiFi-GAN 15.76 0.50 0.753 0.98
BigVGAN 7.44 0.43 0.985 0.72
BemaGAN 9.33 0.45 0.984 0.67
BemaGANv2 4.26 0.37 0.99 0.50
MSD + MED 7.82 0.36 0.988 0.77
MSD + MRD 10.92 0.38 0.983 0.73
MED + MPD + MRD 7.23 0.38 0.988 0.74

is likely due to BemaGANv2’s inability to perfectly reproduce
the loudness of the original audio. However, in the other key
metrics—FAD, PLCC, and MCD—BemaGANv2 effectively
reduces distortion in audio structure and frequency character-
istics, strongly supporting its suitability as a vocoder for TTA
or TTM models.

The subjective evaluation metrics follow a similar trend
to the objective metrics. For short-term audio, HiFi-GAN
achieved the highest MOS, while BigVGAN achieved the
best SMOS. For long-term audio, BemaGANv2 obtained the
highest scores in both MOS and SMOS.

The MED+MPD+MRD combination demonstrated strong
performance in objective metrics for long-term audio, securing
the second-best scores in FAD and PLCC. However, it received
the second-lowest MOS score, likely due to overfitting despite
the experiments being conducted with the same number of
epochs. Additionally, it is important to note the risk of
mode collapse inherent in GAN models when using multiple
discriminators [10] [11]. For this reason, further experiments
involving combinations of three or four different discrimina-
tors were not pursued.

TABLE III
MEAN OPINION SCORE

Models Short Audio MOS ↑ Long Audio MOS ↑
HiFi-GAN 2.64(± 0.09) 1.36(± 0.14)
BigVGAN 1.96(± 0.08) 3.11(± 0.14)
BemaGAN 1.79(± 0.10) 3.07(± 0.13)
BemaGANv2 2.14(± 0.09) 3.38(± 0.11)
MSD + MED 2.14(± 0.09) 2.43(± 0.09)
MSD + MRD 2.14(± 0.10) 2.74(± 0.09)
MED + MPD + MRD 2.18(± 0.07) 2.21(± 0.08)

As illustrated by the Mel-spectrogram in Figure 3, Bema-
GANv2 shows a significant improvement in reconstructing
audio signals, especially in long-term audio. The visual anal-
ysis reveals that BemaGANv2 effectively captures long-term



TABLE IV
SIMILARITY MEAN OPINION SCORE

Models Short Audio SMOS ↑ Long Audio SMOS ↑
HiFi-GAN 2.7(± 0.09) 1.15(± 0.08)
BigVGAN 2.95(± 0.10) 3.3(± 0.11)
BemaGAN 2.48(± 0.10) 3.28(± 0.13)
BemaGANv2 2.53(± 0.09) 3.58(± 0.09)

Fig. 3. Mel-Spectrogram visualization of samples form Ground Truth, Hifi-
GAN, BigVGAN, and BemaGANv2 models trained on LibriTTS

characteristics of the audio, preserving intricate patterns and
structures essential for high-fidelity audio generation. Notably,
BemaGANv2 exhibits reduced noise artifacts compared to
HiFi-GAN and BigVGAN, indicating a more refined and
accurate synthesis process. This reduction in noise not only
enhances the perceptual quality of the generated audio but also
suggests that the model is better at distinguishing and repro-
ducing subtle audio details, further validating the architectural
enhancements implemented in BemaGANv2.

For details on the loss functions and learning rates used in
training, please refer to Appendix A.

IV. CONCLUSION AND FUTURE WORK

A. Conclusion

In this study, BemaGANv2 has been demonstrated to be a
highly suitable vocoder for wide frequency bands and long-
term audio. By introducing the snake activation function,
BemaGANv2 enhances its ability to capture periodicity and
improve extrapolation, surpassing the performance of the
original BemaGAN model, particularly in restoring long-term
audio. In objective evaluation metrics, BemaGANv2 achieves
excellent results in key measures such as FAD, PLCC, and
MCD, significantly broadening its applicability as a vocoder
in TTA and TTM models.

Furthermore, this study explored various discriminator com-
binations to identify the optimal configuration. The result-
ing design of BemaGANv2, informed by these experiments,
demonstrates competitive performance in both objective and
subjective evaluation metrics, showcasing its effectiveness in
audio generation with a focus on real-world user experience.

B. Future Work

Recently, many Diffusion-based audio generation AIs have
used HiFi-GAN as a vocoder. Accordingly, we plan to develop
a new generative AI that applies BemaGANv2 as a vocoder.

Based on the excellent long-term audio processing perfor-
mance and excellent restoration ability in a wide frequency
band of BemaGANv2, this new AI model is expected to enable
more natural and high-quality audio and music generation.

In future work, we will focus on integrating BemaGANv2
into a Latent Diffusion-based model, especially maximizing its
performance in long-term audio and wide frequency band mu-
sic generation. To this end, we will optimize the structure and
parameters of BemaGANv2 with the Latent Diffusion model
to achieve better learning efficiency and generation quality. In
addition, we will explore the applicability of BemaGANv2 in
various application fields and verify its performance in difficult
environments such as real-time audio generation.
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APPENDIX

A. Training Loss

The loss of BemaGANv2 is the same as that used in HiFi-
GAN.

• Gen Loss: This model adopts the approach of LSGAN
[12], where the binary cross-entropy loss function used
in the original GAN objective is replaced with a least
squares loss function. This substitution helps maintain



a non-vanishing gradient flow. The discriminator (D) is
trained to classify real samples as 1 and synthetic samples
generated by the generator (G) as 0. The generator (G)
is then optimized to improve the quality of synthetic
samples so that they are classified by the discriminator as
close to 1 as possible. The GAN losses for the generator
and discriminator are defined in Equations (6) and (7),
where x represents the input condition (the real audio),
and s is the Mel-Spectrogram of the real audio.

LAdv(D;G) = E(x,s)

[
(D(x)− 1)

2
+ (D(G(s)))

2
]

(6)

LAdv(G;D) = Es

[
(D(G(s))− 1)

2
]

(7)

• Mel-Spectrogram Loss: In addition to the GAN objec-
tive, we incorporate a Mel-Spectrogram Loss to further
enhance the training efficiency of the Generator (G) and
improve the fidelity of the generated audio. The Mel-
Spectrogram Loss is defined in (8) as the L1 distance
between the Mel-spectrograms of the waveforms synthe-
sized by the Generator (G) and the real waveforms. This
loss function aids in synthesizing realistic waveforms that
correspond to the input conditions and also helps stabilize
the adversarial training process in its early stages. Here,
Φ is a function that transforms the waveform into the
corresponding mel spectrogram.

LMel(G) = E(x,s) [∥ϕ(x)− ϕ(G(s))∥1] (8)

• Feature Matching Loss:This loss is a learned similarity
metric measured by the difference between features in the
Discriminator (D). It extracts each intermediate feature of
the Discriminator between real and generated samples,
and calculates the L1 distance between real samples and
conditionally generated samples in each feature space.
This loss is based on the similarity in the Discriminator’s
feature space and is used as an additional loss in training
the Generator. It is defined in (9). Here, T represents
the number of layers of the discriminator. Di and Ni

represent the number of features and features in the i-th
layer of the discriminator, respectively.

LFM(G;D) = E(x,s)

[
T∑

i=1

1

Ni

∥∥∥Di(x)−Di(G(s))
∥∥∥
1

]
(9)

• Final Loss: The ultimate objectives of the Generator and
Discriminator are defined in (10) and (10), where the
coefficients are set as λfm = 2 and λmel = 45, following
the configuration of HiFi-GAN. Since the Discriminator
is composed of a set of sub-discriminators, MPD and
MSD, Equations (10) and (11) can be expanded (12) and
(13) for each sub-discriminator. Here, Dk represents the
k-th sub-discriminator in both MPD and MSD.

LG = LAdv(G;D)+λfmLFM(G;D)+λmelLMel(G) (10)

LD = LAdv(D;G) (11)

LG =

K∑
k=1

[LAdv(G;Dk) + λfmLFM(G;Dk)]+λmelLMel(G)

(12)

LD =

K∑
k=1

LAdv(Dk;G) (13)

B. Learning Rate

Fig. 4. Visualization of gradient norm for various combination of discrimi-
nators with Gen Loss Total and Mel-Spectrogram Error

BemaGANv2 stands out for its exceptional convergence
efficiency, enabling the model to achieve high performance
with significantly fewer training epochs compared to other
models. While models like HiFi-GAN and BigVGAN require
extensive training periods to reach optimal results, Bema-
GANv2’s Generator completes the learning process in a re-
duced number of epochs. This efficiency not only decreases the
computational resources and time required for training but also
provides practical advantages in scenarios where rapid model
deployment is crucial. These features make BemaGANv2 an
ideal choice for applications that demand high-quality audio
generation under tight training constraints.
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