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Abstract— Skin cancer is one of the most prevalent cancers
in the world, requiring the examination of tissue samples from
all margins under a microscope through biopsy to determine
whether cancer cells exist. Among skin cancers, squamous cell
carcinoma (SCC) accounts for the majority of metastatic
cancers and deaths related to non-melanoma skin cancers
(NMSC). This study is the first to use the Vision Transformer
(ViT) model to evaluate the margins obtained through biopsy.
Various ViT model variants, including ViT-B16, ViT-B32, and
ViT-L32, were experimented by adding additional layers. The
results showed that the ViT-B16 model, when supplemented
with additional layers, exhibited the best performance in
classifying SCC images, achieving a high AUC value and a low
loss value. This study also compared the performance of the
ViT-B16 model with a CNN-based model, ResNet50, and found
that the VIiT-B16 significantly outperformed ResNet50.
Specifically, the ViT-B16 model achieved an accuracy of 0.906
and an AUC of 0905 in SCC margin classification,
demonstrating its superiority over CNN-based models. This
highlights the potential of the ViT model to surpass conventional
CNNs, particularly showcasing its strength in handling complex
medical image classification tasks.
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I. INTRODUCTION

Skin cancer is a malignancy that arises from the skin, the
outermost layer of the human body, and results from the
abnormal proliferation of skin cells. Globally, one in three
cancer diagnoses is skin cancer, with over 3.5 million
incidences reported annually only in the USA [1]-[2]. Skin
cancer can be broadly categorized into non-melanoma skin
cancer (NMSC) and melanoma (MSC). NMSC is categorized
into squamous cell carcinoma (SCC) and basal cell carcinoma
(BCC). NMSC is the most common malignancy among
Caucasians, with its incidence rate continuing to rise [2].
Notably, SCC accounts for a significant portion of metastatic
cancers and deaths associated with NMSC [3].

SCC is classified into three differentiation stages, with
well-differentiated SCC being Grade | and poorly
differentiated SCC being Grades Il and I1l. Grade IV SCC is
classified as undifferentiated or invasive [4]. In this study, we
focus on the diagnosis of tumor margins and consider all
grades of SCC as malignant, while margins without cancer are
assessed as normal or benign [3].

SCC is primarily diagnosed through dermoscopic
examination or tissue biopsy, followed by Mohs micrographic
surgery (MMS) [3]. After biopsy, tissue samples are taken
from all margins to be examined microscopically to confirm
whether cancer cells have been successfully removed. This
method of margin assessment also plays a crucial role in
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ensuring the complete removal of tumor cells during treatment.
However, microscopic examination relies heavily on the
pathologist’s judgment, requiring extensive experience and
expertise to ensure accurate diagnosis [5].

The quality of histopathological images significantly
impacts the accuracy of Al-based diagnostic systems, with
various factors such as microscope quality, staining
techniques, laboratory conditions, and reagent reliability
playing a crucial role [6-8]. However, in resource-constrained
settings, limited access to high-quality equipment and skilled
personnel often results in low-quality images, which can
hinder accurate diagnosis and treatment planning [9-12].

Over the past decade, convolutional neural networks
(CNNs) have been widely employed for histopathological
image analysis. However, their performance tends to degrade
significantly when dealing with low-quality images [13-16].
To overcome this challenge, this study represents the first
attempt to classify SCC margins using the Vision Transformer
(VIT). VIT is rapidly emerging as a leading deep learning
approach in the field of image processing. Unlike traditional
CNNs, VIT divides the image into patches and processes each
patch through a Transformer architecture to analyze the entire
image [17]. This characteristic of ViT offers the potential to
effectively analyze the complex patterns of skin tissues,
aiming to achieve higher accuracy and efficiency compared to
existing methods [18]-[22].

In this study, we propose a ViT-based model tailored to
classify SCC margins in low-quality histopathological images.
By evaluating the efficacy of VIT in this context, we aim to
demonstrate its potential to improve diagnostic accuracy and
clinical ~ decision-making, even in  resource-limited
environments.

Il. METHODS

A. Dataset and Preprocessing

In this study, tissue samples obtained from Jimma
University Medical Center were used (data can be accessed at
https://osf.io/3ma4p/; last accessed August 28, 2024) [3]. The
collected dataset is composed of tissue sample images from
patients, collected from various skin sites. Hematoxylin and
eosin (H&E) staining was performed on all samples collected.
This dataset comprises slides extracted from a total of 50
patients, of which 17 had well-differentiated SCC, 15 had
moderately differentiated SCC, and 18 had invasive SCC. In
this study, 345 normal tissue sample images were classified as
margin-negative (normal images), while 483 images
containing tumors were designated as margin-positive (tumor
images) [3]. Example images are provided in Fig. 1. 90% of
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the entire dataset were used for training, and the remaining
10% were used for testing.

[Margin Positive]

[Margin Negative]

Fig. 1. Positive and negative images of SCC margin cells

The original resolution of the SCC margin cell images was
2048x1536 pixels, and all images were resized to 224x224
pixels. This is the preferred size for generating patches from
the input images. Additionally, various techniques for
augmentation such flipping, scaling, and rotation were used
for data augmentation. To evaluate the generalization
performance of the model and prevent overfitting, k-fold
cross-validation was conducted.

B. Proposed Model

Throughout this research, a ViT-based training approach
was employed to classify SCC cells as positive or negative.
Consequently, a pre-trained model on the ImageNet dataset
was used. The updated ViT architecture proposed in [23]-[27]
was adopted. This structure has demonstrated superior
performance in previous studies, particularly showing higher
accuracy and stability compared to conventional models in
image classification tasks. This architecture is designed by
sequentially adding a flattening layer, batch normalization,
and Dense layers after the MLP head of the ViT model, and
the proposed structure can be seen in Fig. 2.
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Fig. 2. Structure of ViT model with added layers

C. Training Procedure

The VIiT model uses the Adam optimizer, known for its
ability to handle large-scale datasets and high-dimensional
parameter spaces effectively. Training was conducted using a
learning rate of 0.0001, as determined optimal in prior
research. The training process was performed on a high-
performance computing cluster equipped with NVIDIA GPU
3090, which enabled efficient processing of computationally
intensive tasks. To verify the performance improvement of the
proposed architecture, training was performed using a total of
50 epochs. A batch size of 64 was used to balance memory
efficiency and learning speed. Additionally, L2 regularization
in the form of weight decay was applied to prevent overfitting
by discouraging the learning of overly complex patterns. This
settings also aimed to evaluate whether the proposed model

could achieve comparable results under varying datasets and
experimental conditions.

I1l. RESULTS

This work conducted experiments based on the ViT
model. The models used were ViT-B16, ViT-B32, and ViT-
L32, and their performance was compared. As shown in
TABLE I, the ViT-B16 model, with the proposed additional
layers, outperformed the other models in classifying SCC
images. The ViT-B16 achieved an accuracy of 0.906, an AUC
of 0.905, and a loss value of 0.402, surpassing ViT-B32 in all
aspects. ViT-L16 had a loss value of 0.448, confirming that
ViT-B16 was the best-performing model. Additionally, as
illustrated in Fig. 3, ViT-B16 exhibited relatively stable
convergence, and the ROC curve, with a value of 0.905,
demonstrated the strong discriminatory power of the model.
The confusion matrix further supported the accuracy of ViT-
B16, showing very few misclassification cases.

TABLE I: EXPERIMENTAL RESULTS AND PERFORMED
COMPARISONS FOR DIFFERENT MODELS

Model Acc. Prec. Recall F-1 score AUC Loss
ViT-B16 | 0.906 0.902 0.906 0.902 0.905 | 0.402
ViT-B32 | 0.878 0.88 0.884 0.878 0.882 | 0.447
ViT-L16 | 0.904 0.902 0.904 0.902 0.902 | 0.448

[Learning curve] [confusion matrix]

Fig. 3. Visualization the results of the ViT-B16 model as learning curve,
ROC curve, and confusion matrix

Additionally, as shown in TABLE I, modifying the ViT-
B16 model with different layers resulted in lower performance
compared to the model with the proposed layers, confirming
that the suggested layers contributed to the improvement in
performance.

TABLE II: Experimental results and comparisons for different layer
additions were performed : F, flatten; B, batch normalization; D, Dense

Layer Acc. | Prec. | Recall | F-1score | AUC
ViT+F+B+D+B+D 0.884 | 0.882 | 0.886 0.882 0.885
ViT+B+D+F+B+D 0.902 | 0.902 | 0.898 0.898 0.897

Lastly, as presented in TABLE Ill, the comparison with
ResNet50, a traditional CNN model, demonstrates that the
Vision Transformer model can achieve superior performance
in image classification tasks.

TABLE II1: Comparisons with experimental results
for CNNs were performed.

Model Acc. Prec. Recall | F-1score | AUC Loss
ViT-B16 0.906 | 0.902 | 0.906 0.902 0.905 | 0.402
ResNet50 | 0.816 0.79 0.81 0.76 0.762 | 0.538

IV. DISCUSSION

In this study, the VIiT was wused to classify
histopathological margin images of SCC. Notably, the ViT-
B16 model, with additional layers, demonstrated excellent
performance in SCC margin image classification tasks. The
ViT-B16 model achieved a high accuracy of 0.906 and an
AUC value of 0.905, outperforming other ViT variants (ViT-
B32, ViT-L32) as well as the traditional CNN model



(ResNet50). It also recorded a lower loss value of 0.402
compared to other models. This indicates that the structural
characteristics of the ViT-B16 model and the design of the
additional layers significantly enhanced the model's learning
ability and classification performance.

In experiments where different layers were applied to the
ViT-B16 model, performance actually decreased, confirming
that the originally proposed layer structure was the most
suitable for achieving optimal performance. These results
suggest that careful adjustments to the model's architecture
can impact the performance of the ViT model.

Furthermore, the superior performance of the ViT model
compared to traditional CNN models like ResNet50 highlights
that the modeling approach of Vision Transformers—
processing images based on patches—can more effectively
learn fine image features that traditional CNN models may
struggle to capture. These findings suggest the potential for
Vision Transformer models to be improvement over CNNs in
a variety of image analysis tasks.

This study has limitations. First, this study considered
limited number of parameters that affect performance of
vision transformers. Future studies should consider
experimenting with the various types deep learning
parameters to improve performance. Second, in this study,
only three variants of additional layers were experimented,
further experiment with more additional layers might improve
performance. Lastly, this study was conducted using data from
a single institution, and the proposed method was not
validated on independent external datasets. Future studies
should aim to assess the generalizability and robustness of the
proposed approach across diverse datasets and clinical
environments.

V. CONCLUSION

Globally, skin cancer is commonly diagnosed through
Mohs micrographic surgery for tumor removal, followed by
histopathological analysis of margin samples to confirm the
complete excision of cancer cells. Margin evaluation plays a
crucial role in ensuring the thorough removal of tumor cells,
and thus, this study focused on classifying SCC margins using
the ViT.

Several variants of the VIiT model (ViT-B16, ViT-B32,
ViT-L32) were used to assess performance. The results
showed that the ViT-B16 model, with additional layers
proposed in previous studies, demonstrated the best
performance, even surpassing the classification ability of
ResNet50, a traditional CNN model. The ViT-B16 model
achieved an accuracy of 0.906 and an AUC value of 0.905,
effectively classifying SCC margin images. These findings
suggest that the ViT model perform better than CNNs for SCC
images classification.

Future research should focus on further optimizing the
performance of ViT models. First, it is necessary to analyze
the training process by applying various parameters that
maximizes the generalization performance of the model.
Second, to further enhance the performance of the ViT-B16
model, experimenting with different layer configurations
beyond the existing ones to find the best combination is
essential. Specifically, it is important to explore how
introducing additional attention mechanisms or more complex
network architectures could improve the model's
performance. Furthermore, to expand the applicability of ViT

models, it is critical to validate their performance across
diverse medical image datasets and evaluate whether the
model consistently achieves high performance in image
classification tasks across various medical fields. Such
research could open up new possibilities for the widespread
use of VIiT models in a range of medical image analysis
applications, including skin cancer diagnosis.
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