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Abstract— Skin cancer is one of the most prevalent cancers 

in the world, requiring the examination of tissue samples from 

all margins under a microscope through biopsy to determine 

whether cancer cells exist. Among skin cancers, squamous cell 

carcinoma (SCC) accounts for the majority of metastatic 

cancers and deaths related to non-melanoma skin cancers 

(NMSC). This study is the first to use the Vision Transformer 

(ViT) model to evaluate the margins obtained through biopsy. 

Various ViT model variants, including ViT-B16, ViT-B32, and 

ViT-L32, were experimented by adding additional layers. The 

results showed that the ViT-B16 model, when supplemented 

with additional layers, exhibited the best performance in 

classifying SCC images, achieving a high AUC value and a low 

loss value. This study also compared the performance of the 

ViT-B16 model with a CNN-based model, ResNet50, and found 

that the ViT-B16 significantly outperformed ResNet50. 

Specifically, the ViT-B16 model achieved an accuracy of 0.906 

and an AUC of 0.905 in SCC margin classification, 

demonstrating its superiority over CNN-based models. This 

highlights the potential of the ViT model to surpass conventional 

CNNs, particularly showcasing its strength in handling complex 

medical image classification tasks. 
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I. INTRODUCTION 

Skin cancer is a malignancy that arises from the skin, the 
outermost layer of the human body, and results from the 
abnormal proliferation of skin cells. Globally, one in three 
cancer diagnoses is skin cancer, with over 3.5 million 
incidences reported annually only in the USA [1]-[2]. Skin 
cancer can be broadly categorized into non-melanoma skin 
cancer (NMSC) and melanoma (MSC). NMSC is categorized 
into squamous cell carcinoma (SCC) and basal cell carcinoma 
(BCC). NMSC is the most common malignancy among 
Caucasians, with its incidence rate continuing to rise [2]. 
Notably, SCC accounts for a significant portion of metastatic 
cancers and deaths associated with NMSC [3]. 

SCC is classified into three differentiation stages, with 
well-differentiated SCC being Grade I and poorly 
differentiated SCC being Grades II and III. Grade IV SCC is 
classified as undifferentiated or invasive [4]. In this study, we 
focus on the diagnosis of tumor margins and consider all 
grades of SCC as malignant, while margins without cancer are 
assessed as normal or benign [3]. 

SCC is primarily diagnosed through dermoscopic 
examination or tissue biopsy, followed by Mohs micrographic 
surgery (MMS) [3]. After biopsy, tissue samples are taken 
from all margins to be examined microscopically to confirm 
whether cancer cells have been successfully removed. This 
method of margin assessment also plays a crucial role in 

ensuring the complete removal of tumor cells during treatment. 
However, microscopic examination relies heavily on the 
pathologist’s judgment, requiring extensive experience and 
expertise to ensure accurate diagnosis [5]. 

The quality of histopathological images significantly 
impacts the accuracy of AI-based diagnostic systems, with 
various factors such as microscope quality, staining 
techniques, laboratory conditions, and reagent reliability 
playing a crucial role [6–8]. However, in resource-constrained 
settings, limited access to high-quality equipment and skilled 
personnel often results in low-quality images, which can 
hinder accurate diagnosis and treatment planning [9–12]. 

Over the past decade, convolutional neural networks 
(CNNs) have been widely employed for histopathological 
image analysis. However, their performance tends to degrade 
significantly when dealing with low-quality images [13–16]. 
To overcome this challenge, this study represents the first 
attempt to classify SCC margins using the Vision Transformer 
(ViT). ViT is rapidly emerging as a leading deep learning 
approach in the field of image processing. Unlike traditional 
CNNs, ViT divides the image into patches and processes each 
patch through a Transformer architecture to analyze the entire 
image [17]. This characteristic of ViT offers the potential to 
effectively analyze the complex patterns of skin tissues, 
aiming to achieve higher accuracy and efficiency compared to 
existing methods [18]-[22].  

In this study, we propose a ViT-based model tailored to 
classify SCC margins in low-quality histopathological images. 
By evaluating the efficacy of ViT in this context, we aim to 
demonstrate its potential to improve diagnostic accuracy and 
clinical decision-making, even in resource-limited 
environments. 

II. METHODS 

A. Dataset and Preprocessing 

In this study, tissue samples obtained from Jimma 
University Medical Center were used (data can be accessed at 
https://osf.io/3ma4p/; last accessed August 28, 2024) [3]. The 
collected dataset is composed of tissue sample images from 
patients, collected from various skin sites. Hematoxylin and 
eosin (H&E) staining was performed on all samples collected. 
This dataset comprises slides extracted from a total of 50 
patients, of which 17 had well-differentiated SCC, 15 had 
moderately differentiated SCC, and 18 had invasive SCC. In 
this study, 345 normal tissue sample images were classified as 
margin-negative (normal images), while 483 images 
containing tumors were designated as margin-positive (tumor 
images) [3]. Example images are provided in Fig. 1. 90% of 
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the entire dataset were used for training, and the remaining 
10% were used for testing.  

 

Fig. 1. Positive and negative images of SCC margin cells 

The original resolution of the SCC margin cell images was 
2048x1536 pixels, and all images were resized to 224x224 
pixels. This is the preferred size for generating patches from 
the input images. Additionally, various techniques for 
augmentation such flipping, scaling, and rotation were used 
for data augmentation. To evaluate the generalization 
performance of the model and prevent overfitting, k-fold 
cross-validation was conducted. 

B. Proposed Model 

Throughout this research, a ViT-based training approach 
was employed to classify SCC cells as positive or negative. 
Consequently, a pre-trained model on the ImageNet dataset 
was used. The updated ViT architecture proposed in [23]-[27] 
was adopted. This structure has demonstrated superior 
performance in previous studies, particularly showing higher 
accuracy and stability compared to conventional models in 
image classification tasks. This architecture is designed by 
sequentially adding a flattening layer, batch normalization, 
and Dense layers after the MLP head of the ViT model, and 
the proposed structure can be seen in Fig. 2.  

 

Fig. 2. Structure of ViT model with added layers 

C. Training Procedure 

The ViT model uses the Adam optimizer, known for its 
ability to handle large-scale datasets and high-dimensional 
parameter spaces effectively. Training was conducted using a 
learning rate of 0.0001, as determined optimal in prior 
research. The training process was performed on a high-
performance computing cluster equipped with NVIDIA GPU 
3090, which enabled efficient processing of computationally 
intensive tasks. To verify the performance improvement of the 
proposed architecture, training was performed using a total of 
50 epochs. A batch size of 64 was used to balance memory 
efficiency and learning speed. Additionally, L2 regularization 
in the form of weight decay was applied to prevent overfitting 
by discouraging the learning of overly complex patterns. This 
settings also aimed to evaluate whether the proposed model 

could achieve comparable results under varying datasets and 
experimental conditions.  

III. RESULTS 

This work conducted experiments based on the ViT 
model. The models used were ViT-B16, ViT-B32, and ViT-
L32, and their performance was compared. As shown in 
TABLE I, the ViT-B16 model, with the proposed additional 
layers, outperformed the other models in classifying SCC 
images. The ViT-B16 achieved an accuracy of 0.906, an AUC 
of 0.905, and a loss value of 0.402, surpassing ViT-B32 in all 
aspects. ViT-L16 had a loss value of 0.448, confirming that 
ViT-B16 was the best-performing model. Additionally, as 
illustrated in Fig. 3, ViT-B16 exhibited relatively stable 
convergence, and the ROC curve, with a value of 0.905, 
demonstrated the strong discriminatory power of the model. 
The confusion matrix further supported the accuracy of ViT-
B16, showing very few misclassification cases. 

TABLE I: EXPERIMENTAL RESULTS AND PERFORMED 
COMPARISONS FOR DIFFERENT MODELS 

Model Acc. Prec. Recall F-1 score AUC Loss 

ViT-B16 0.906 0.902 0.906 0.902 0.905 0.402 

ViT-B32 0.878 0.88 0.884 0.878 0.882 0.447 

ViT-L16 0.904 0.902 0.904 0.902 0.902 0.448 

 

 

Fig. 3. Visualization the results of the ViT-B16 model as learning curve, 

ROC curve, and confusion matrix 

Additionally, as shown in TABLE II, modifying the ViT-
B16 model with different layers resulted in lower performance 
compared to the model with the proposed layers, confirming 
that the suggested layers contributed to the improvement in 
performance. 

TABLE II: Experimental results and comparisons for different layer 
additions were performed : F, flatten; B, batch normalization; D, Dense 

Layer Acc. Prec. Recall F-1 score AUC 

ViT+F+B+D+B+D 0.884 0.882 0.886 0.882 0.885 

ViT+B+D+F+B+D 0.902 0.902 0.898 0.898 0.897 

Lastly, as presented in TABLE III, the comparison with 
ResNet50, a traditional CNN model, demonstrates that the 
Vision Transformer model can achieve superior performance 
in image classification tasks. 

TABLE III: Comparisons with experimental results                                       
for CNNs were performed. 

Model Acc. Prec. Recall F-1 score AUC Loss 

ViT-B16 0.906 0.902 0.906 0.902 0.905 0.402 

ResNet50 0.816 0.79 0.81 0.76 0.762 0.538 

IV. DISCUSSION 

In this study, the ViT was used to classify 
histopathological margin images of SCC. Notably, the ViT-
B16 model, with additional layers, demonstrated excellent 
performance in SCC margin image classification tasks. The 
ViT-B16 model achieved a high accuracy of 0.906 and an 
AUC value of 0.905, outperforming other ViT variants (ViT-
B32, ViT-L32) as well as the traditional CNN model 



(ResNet50). It also recorded a lower loss value of 0.402 
compared to other models. This indicates that the structural 
characteristics of the ViT-B16 model and the design of the 
additional layers significantly enhanced the model's learning 
ability and classification performance. 

In experiments where different layers were applied to the 
ViT-B16 model, performance actually decreased, confirming 
that the originally proposed layer structure was the most 
suitable for achieving optimal performance. These results 
suggest that careful adjustments to the model's architecture 
can impact the performance of the ViT model. 

Furthermore, the superior performance of the ViT model 
compared to traditional CNN models like ResNet50 highlights 
that the modeling approach of Vision Transformers—
processing images based on patches—can more effectively 
learn fine image features that traditional CNN models may 
struggle to capture. These findings suggest the potential for 
Vision Transformer models to be improvement over CNNs in 
a variety of image analysis tasks. 

This study has limitations. First, this study considered 
limited number of parameters that affect performance of 
vision transformers. Future studies should consider 
experimenting with the various types deep learning 
parameters to improve performance. Second, in this study, 
only three variants of additional layers were experimented, 
further experiment with more additional layers might improve 
performance. Lastly, this study was conducted using data from 
a single institution, and the proposed method was not 
validated on independent external datasets. Future studies 
should aim to assess the generalizability and robustness of the 
proposed approach across diverse datasets and clinical 
environments. 

V. CONCLUSION 

Globally, skin cancer is commonly diagnosed through 
Mohs micrographic surgery for tumor removal, followed by 
histopathological analysis of margin samples to confirm the 
complete excision of cancer cells. Margin evaluation plays a 
crucial role in ensuring the thorough removal of tumor cells, 
and thus, this study focused on classifying SCC margins using 
the ViT. 

Several variants of the ViT model (ViT-B16, ViT-B32, 
ViT-L32) were used to assess performance. The results 
showed that the ViT-B16 model, with additional layers 
proposed in previous studies, demonstrated the best 
performance, even surpassing the classification ability of 
ResNet50, a traditional CNN model. The ViT-B16 model 
achieved an accuracy of 0.906 and an AUC value of 0.905, 
effectively classifying SCC margin images. These findings 
suggest that the ViT model perform better than CNNs for SCC 
images classification. 

Future research should focus on further optimizing the 
performance of ViT models. First, it is necessary to analyze 
the training process by applying various parameters that 
maximizes the generalization performance of the model. 
Second, to further enhance the performance of the ViT-B16 
model, experimenting with different layer configurations 
beyond the existing ones to find the best combination is 
essential. Specifically, it is important to explore how 
introducing additional attention mechanisms or more complex 
network architectures could improve the model's 
performance. Furthermore, to expand the applicability of ViT 

models, it is critical to validate their performance across 
diverse medical image datasets and evaluate whether the 
model consistently achieves high performance in image 
classification tasks across various medical fields. Such 
research could open up new possibilities for the widespread 
use of ViT models in a range of medical image analysis 
applications, including skin cancer diagnosis. 
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