Enhancing Reasoning Capacity of SLM using
Cognitive Enhancement

Jonathan Pan, Swee Liang Wong, Xin Wei Chia, Yidi Yuan
Home Team Science and Technology Agency, Singapore
Jonathan Pan@htx.gov.sg, Wong_Swee Liang@htx.gov.sg, Chia_ Xin Wei@htx.gov.sg, Yuan_Yidi@htx.gov.sg

Abstract— Large Language Models (LLMs) have been applied
to automate cyber security activities and processes including cyber
investigation and digital forensics. However, the use of such
models for cyber investigation and digital forensics should address
accountability and security considerations. Accountability ensures
models have the means to provide explainable reasonings and
outcomes. This information can be extracted through explicit
prompt requests. For security considerations, it is crucial to
address privacy and confidentiality of the involved data during
data processing as well. One approach to deal with this
consideration is to have the data processed locally using a local
instance of the model. Due to limitations of locally available
resources, namely memory and GPU capacities, a Smaller Large
Language Model (SLM) will typically be used. These SLMs have
significantly fewer parameters compared to the LLMs. However,
such size reductions have notable performance reduction,
especially when tasked to provide reasoning explanations. In this
paper, we aim to mitigate performance reduction through the
integration of cognitive strategies that humans use for problem-
solving. We term this as cognitive enhancement through prompts.
Our experiments showed significant improvement gains of the
SLMs’ performances when such enhancements were applied. We
believe that our exploration study paves the way for further
investigation into the use of cognitive enhancement to optimize
SLM for cyber security applications.
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I. INTRODUCTION

In the field of cyber investigation and digital forensics, the
analysis of logs is a frequent activity. It is also an important
research topic with practical significance in the field of failure
identification [1], [2] and security threat detection [3], [4]. Such
analysis is done to facilitate the detection of anomalous activities
so that immediate or corresponding remediation may be done to
contain or remediate the issue recorded in the logs. The issue
may affect system resiliency against system faults, degradation
and intentionally induced cyber physical attacks. However, the
analysis of logs has its complexities namely from being
voluminous, varied, and contextual. Additionally, logs possess
inherent semantic complexity [5].

With the recent advances with Large Language Models
(LLMs), they provide the means to automate the analysis of logs
[6][71[8][9]- While automation provides productivity gains,
explain-ability of the analysis and conclusions made by such
Artificial Intelligence (AI) solutions remains an important

attribute for such solutions to be adopted [10]. Another issue
with LLMs is that not all digital forensics or investigative
activities are suitable for services delivered through online
channels[11]. A locally deployed model would be needed where
there are privacy and confidentiality concerns. However, such
online LLMs are measurably larger with their resource demands
requiring more compute resources in the form of GPUs and
memory. An alternative solution is to run smaller versions of
their large contemporaries on local compute resources like GPU
equipped laptops, work stations or servers. In this research work,
we explore the use of cognitive enhancement through prompts
to improve the performance of the Smaller Large Language
Models (SLMs).

In the next section, we will cover the complexity of
performing log analysis and considerations when using
language models for such task. This is followed by a review of
current research work in the use of language models for log
analysis and ways to improve the performances of SLMs. We
then described our proposed cognitive enhancement technique
used with details of the experimental setup and its evaluation.
This paper concludes with a summary of this work and potential
future research direction.

II. BACKGROUND INFORMATION

In this section, we articulate the background information
related to the complexity in performing log analysis. We also
consider what is needed if language models are practically used
for such task.

A. Complexity with Log Analysis

The form for logs is typically unique to how the software has
been developed or configured to post entries into these textual
files. These logs are contextual to the environment which the
system resides in [5]. Hence, the analysis of such log datasets
requires contextual understanding of the system or component
that generates such logs especially when attempting to classify
or distinguish what is a normal log entry and what is not.
Anomaly recordings in logs may not include explicit keywords
like ‘Error’ or ‘Failure’ to which signature-based rule engine
could detect and draw needed attention. The limited sample size
of the varied forms of anomalous log entries would create more
constraints to enable the development of a robust machine
learning model to detect anomalies from logs. Hence log



analysis requires semantic comprehension [12][5] and to
overcome the constraints of having limitedly available
information about the form of anomalies that could occur.

B. Consideration on the Use of Language Models

In our previous research work, we demonstrated that we
could use a LLM to perform log anomaly detection with a vector
database containing only selected samples of normal log entries
based on the log entries clustering distribution. Our model
construct, that we called RAGLog [9] used the Retrieval
Augmented Generative approach with GPT 3.5 to perform logs
analysis that performed relatively well for a zero-shot classifier.

However, for cybersecurity applications, we will require the
construct to work on locally deployed LLM instead of using
online LLM instances. This is to address concerns with privacy
and confidentiality. However, locally deployed LLM have
limited resources available in terms of compute and memory
resources. Hence, local deployment would be limited to SLMs
to operate within such constraints. Given the absence of clear
technical definitions of SLMs in the field, in this paper, we
describe them as models that can be readily operated on a
consumer hardware. This includes models such as LLaMa 2 7b.
However, it is known that these smaller models have
comparatively limited capabilities as compared to their larger
counterparts. In this research context, the smaller models have
difficulties solving complex tasks that involves multiple
reasoning steps [13]. This research work seeks to deal with that.

Another important consideration with the use of LLM for log
analysis and for the broader cyber security application is to have
the means for humans to evaluate the correctness of the models’
assessment. This will help the human log reviewer or
investigator to assess whether the anomaly classification is valid
and warrants further investigation. In the absence of the means
to evaluate the correctness of such models, these cyber security
practitioners would be less inclined to accept the decisions made
by these models[14].

III. RELATED WORK

In this section, we review the current state of art research
work in the use of Language Models to perform log analysis
and log anomaly detection. We also review how Small
Language Models are being tuned for high performance.

A. Language Models for Log Analysis

There are several research attempts to apply Large Language
models to perform log analysis. Qi et al. [6] proposed a
framework for log-based anomaly detection using ChatGPT
using varied prompt constructs, window sizes and input
sequences. Their work showed the non-triviality of an optimal
prompt, window size limitations as well as high false positive
rates. Mudgal et al. [7] designed specific prompts with ChatGPT
for log parsing that had excellent performance. However, with
other areas of log analysis like anomaly detection and log
summarization, the LLM exhibited limitations that warrant
further research. Liu et al. [8] tested their LogPrompt model in
zero-shot scenarios with varying number of provided log
samples and different prompt formats (self-prompt, CoT
prompts and In-context Prompt). The zero-shot test results

showed promise when compared with our log analysis
algorithms and other Deep Learning architectures. However, it
had very low precision scores which is not optimal if applied to
log analysis for operations and maintenance activities to support
resiliency. We also applied GPT 3.5 to perform log anomaly
detection using Retrieval Augmented Generation approach
which we called RAGLog [9]. However, all such approaches
focused on the use of Large Language Models instead of Small
Language Model. This research work seeks to address this gap.

B. Improving Smaller Large Language Models

There are a number of studies in how to teach or improve the
capabilities of small language models. Magister et. al [15]
argued that one approach, through the use of knowledge
distillation, enables the transfer of reasoning capabilities from a
large model of over 100 billion parameters to smaller models.
Such finetuning approach improves the task accuracy of these
smaller models across a range of benchmarking datasets. Xie et.
al [29] suggested training several small language models with
multiple candidates plan and subsequently select a good one.
Another work suggested parameter editing methods and saw
performance in small language models [30]. Majority of
approaches look to improve SLMs through fine tuning [31].
However, this approach requires expertise and computational
resources, which poses a challenge for local deployment where
resources are limited. Therefore, there is a need to explore
alternative strategies to improve the performance of SLMs
without the need of extensive computational resources.

C. Cognitive Enhancements of Language models

In this paper, we explore the use of cognitive enhancements
to improve the outcome of a SLM. While there has been
extensive research into the use of prompt engineering to
improve performance, such as Chain-of-Thought (CoT) [34]
and Self-Consistency [33] these approaches were often
performed on larger language models. Importantly, it was found
that the use of CoT only yielded performance improvement
when used on models with larger than 100B model parameters.
Smaller models produced illogical outcomes, leading to poorer
outcomes. The same limitations were observed for Self-
Consistency where the gain in accuracy was lower for smaller
models. Inspired by introspective reasoning in human
cognition, Wang and Zhao [35] explored the use of
metacognition to improve the outcome of LLMs.
Metacognitive prompting led to an improvement of accuracy
when compared to standard and CoT prompting. However, like
CoT, performance gains were only observed in the larger GPT-
4 model. Hence, there is a need to further investigate cognitive
enhancement techniques that would significantly improve the
performance of SLMs.

IV. COGNITIVE ENHANCEMENT

Our research question attempts to address the question
whether smaller language models, with its comparatively
weaker cognitive capabilities, could improve its performance
through cognitive enhancements. More specifically, we
hypothesized that decomposing a task into smaller manageable
steps can improve the outcome of SLMs on a combined
reasoning and decision-making or classification task. We also



applied Self-Reflection to validate the reasoning and decision-
making cognitive process.

A. Task Decomposition

In the study of psychology and cognitive science, there are
studies on the effects of increased levels of cognitive load that
could cause people to make poorer decisions [19]. One
approach proposed to deal with cognitive overload is the use of
task decomposition [20]. Task decomposition is the process of
breaking down complex tasks or problems into smaller
manageable tasks or steps. It also involves defining the
sequence of subgoals to achieve the main goal or objective
[21][22]. We propose that we could apply the same approach to
break down the complex task of performing log analysis into
smaller sub-tasks that the small language models are better
capable of handling and to assess whether our approach leads
to better and comparable performances against their much
larger counterparts. There exists past work in the use of Task
Decomposition [23]. However, they are focused on its
application in LLMs to enhance their performance instead of
SLMs.

We propose the following mathematical formulation for
task decomposition in Equation 1, where a complex composite
task c is broken into simpler sequentially concatenated tasks c;.
For each decomposed task an input x; formulated in the form
of a prompt is given to the language model. The reply from the
language model would be the output y to the prompt query and
classification conclusion to the query task. When there is a
concatenation of two cognitive tasks with the additive
operation, the output of the preceding cognitive task would be
the input to the proceeding cognitive task (Equation 2). This
continues until the entire set of the decomposed tasks is done.
In contrast, without task decomposition, a composite task can
be given an input in the form of a composite input x (Equation
3).

c=cy+c )
y = ¢o(x) + ¢1(x1) (2
y=c(x) 3)

An example of the prompt-based task decomposition is as
such.

You are a system admin. Consider this log entry...
<query: log entry>
Question: Does the log entry indicate normalcy or not ?
Explain your analysis and answer True if normal
otherwise answer False.

l

You are a system admin. Consider this log entry...
<query: log entry>
Question: Does the log entry indicate normalcy or not ?
Explain your analysis.

+

Answer True if normal otherwise answer False.

Figure 1. Task Decomposition illustrating the decomposition of
a prompt into two sequential Explain and Decide prompts
respectively.

B. Self-Reflection

As the analysis task was decomposed into smaller tasks
namely with the reasoning (Explaining) and classification
(Deciding) as two smaller tasks, we included self-reflective task.
The self-reflective task acts as a feedback activity for the
language model to validate the earlier reasoning and
classification conclusion. Shinn et. al [32] argues that using self-
reflection improves decision-making performance.

V. METHODOLOGY AND ANALYSIS

In our experiment setup, we designed our experiment to
address our research question whether Retrieval Augmented
Generation in LLM could perform log anomaly detection.

A. Log Datasets

For our log datasets, we used BGL [25] and Thunderbird
[26]. These are two popular datasets typically used by
researchers to evaluate log analysis models [24].

The BGL are open real-world datasets from HPC from a
BlueGene/L supercomputer at Lawrence Livermore National
Labs. This dataset has an important characteristic associated
with their appearance of many new log messages in the timeline
of the data, that is, the systems change over time. The
Thunderbird open dataset of logs was collected by Sandia
National Lab. It contains alert and non-alert messages. Both
datasets are labelled with sizeable imbalance for the anomaly
class.

B. Evaluation Metrics

As the dataset used had binary classification labels, we used
Precision to measure the accuracy of the model against type I
error (true positive) and Recall to measure the accuracy of the
models against type II error (true negative). Finally, we used F'/
score to measure the harmonic mean of precision and recall.

... TP 4)
Precision = TP+ FP
TP %)
Recall = TP+ FN
Precision X Recall (6)
F1 score =2 X

Precision + Recall

TP (True Positive) represents the number of correctly
classified anomalies, TN (True Negative) represents normal log
entries and FP (False Positive) is the number of incorrect
anomaly classification. FN (False Negative) is the number of
incorrect classifications of log entries as normal while the label
or ground truth states overwise.

C. Experimentation Preparation and Execution

We first populated the vector database with selected samples
and limited size of the log database with normal log entries. The



selection was done by first applying unsupervised k-means
clustering to the dataset and populating the database from
random sampling from the cluster classes. This is to ensure that
the sample selection had a good distribution of the normal log
entries.

For our experiment, we used four variations of pretrained
Small Language Models. They are Meta’s LLaMa 2 7B, Meta’s
LLaMa 2 13B, Vicuna 7B and Vicuna 13B. The LLaMa 2 [27]
is an auto-regression language model that uses an optimized
transformer architecture. The models are tuned using supervised
fine-tuning (SFT) and reinforcement learning with human
feedback (RLHF) to align to human preferences for helpfulness
and safety. The Vicuna models [28] are fine-tuned from LLaMa
2 wusing high quality conversations using user-shared
conversations hosted in ShareGPT.com. Due to resource
limitations, we used the quantized versions of the models
specifically the GGUF Q4 K M format by llama.cpp team.

The experiment configuration for this research work used the
the same construct as our previous experiment in our work in
RAGLog [9]. We used vector databases to store the embeddings
of limited sized selected log entries. The log entries in the
database contain only the normal log entries. There were no
more than two thousand entries of these normal log entries. The
selection of the normal log entries to be populated is done first
with the clustering of normal log entries and random selection
of cluster classes. Using the Retrieval Augmented Generation
approach [17], the Small Language Model would be queried
with the log entry under evaluation using the Question and
Answer template [18]. The orchestrator would then query the
vector database through the embedding model to retrieve the
best matched normal log entry. The resultant from the vector
database would then be given to the SLM with our specially
constructed prompts with the final concluding reply provided by
the orchestrator where ground truth verification is done against
the provided labels for corresponding dataset.

Query:
Log Entry

)
Small

Language
Model

Vector
Database
(selected
normal log
entries)

()

Embedding
model

-

Result:
Normal /
Abnormal

Figure 2. Workflow of log analysis.

The concluding reply to the queried log entry would contain
the reasoning explanation to facilitate validation by a human
analyst and the inferred classification conclusion that would be
used to assess the model’s performance.

For this paper, the orchestrator was scripted to enable the
incorporation of cognitive enhancement. The main variable to
our research construct is the inclusion of Task Decomposition
through prompts. For our experiment, we used two such forms
namely Explain First and Decide Later or Decide First and
Explain Later. The Explain First and Decide Later is an
approach proposed by Yao et. al [16] with their ReAct
framework for LLMs to generate reasoning traces and task-

specific actions. Results from research work showed that their
framework outperform several state-of-the-art baseline tests on
decision-making tasks. As part of this experiment, we attempted
to explore the alternative, Decide First and Explain Later to
investigate if the sequence of task decomposition affects
performance. We included Self-Reflection into our cognitive
process as the concluding cognitive process task after both
reasoning explanation and classification conclusion were
generated.

Hence, our experiments conducted were as such with the
corresponding prompts.

e [{E,D}+R] Explain and Decide then Reflect; where
Explain and Decide are done as one activity without task
decomposition followed by self-reflection.

e [{D,E}+R] Decide and Explain then Reflect; where
Decide and Explain are done as one activity without task
decomposition followed by self-reflection

e [E+D+R] Explain, Decide then Reflect; where each
activity is done in the mentioned sequence with task
decomposition followed by self-reflection.

o [D+E+R] Decide, Explain then Reflect; where each
activity is done in the mentioned sequence with task
decomposition followed by self-reflection.

Each activity was executed with its corresponding prompt.
One prompt was used for the combined pair of Decide and
Explain or Explain and Decide when they were executed as one
activity. The reply responses from the models following the
query prompts were evaluated against their corresponding labels
(normal or anomaly).

D. Results and Analysis

The following are our experiment test results for both datasets
(BGL and Thunderbird). Bolded scores indicate the best result
for each model.

w/o Task w/ Task
Model Decomposition Decomposition
{(E,D}+R  {D,E}+R | E+D+R  D+E+R
LLaMA 2 7B 0.74 0.67 0.71 0.82
LLaMA 2 13B 0.71 0.67 0.72 0.58
Vicuna 7B 0.67 0.71 0.72 0.75
Vicuna 13B 0.69 0.67 0.80 0.86

Table 1. F1 scores for experiments involving BGL dataset

w/o Task w/ Task
Model Decomposition Decomposition
{E,D}+R  {D.E+R | E+D+R  D+E+R
LLaMA 2 7B 0.68 0.70 0.75 0.74
LLaMA 2 13B 0.82 0.72 0.88 0.94
Vicuna 7B 0.68 0.70 0.76 0.73
Vicuna 13B 0.71 0.68 0.90 0.94




Table 2. F1 scores for experiments involving Thunderbird
dataset

The highlighted F1 scores showed significant improvements
especially when Task Decomposition was applied. However, we
do notice that for conditions LLaMa 2 7B with [E+D+R] and
LLaMA 2 13B with [D+E+R], Task Decomposition led to a
reduction in performance when compared to their respective
conditions without Task Decomposition. This warrants further
experiments especially with the tuning of prompts. In addition,
we found that the sequence of Explain and Decide does not play
a significant role in the model’s performance.

VI. CONCLUSION AND FUTURE DIRECTIONS

Our research work explored the use of Smaller Large
Language Model (SLM) to perform log anomaly detection based
on our earlier work that applied the Retrieval Augmented
Generation approach with GPT 3.5 (RAGLog). As SLMs lack
reasoning capacity in comparison to LLMs, we used Task
Decomposition to decompose the prompt into smaller
manageable steps and noted significant performance
improvements. By applying this to a log analysis cybersecurity
application, we improved the performance of SLMs to achieve
robust outcomes while simultaneously addressing concerns
related to data privacy and confidentiality. Our study
demonstrates the plausible use of such cognitive enhancement
through Task Decomposition to improve SLMs’ capabilities.

The next step to this research work is to apply this to real-
world log analysis and assess the performance. Also, we will
look into how such language models can reduce the time needed
for such log analysis as the current approach performs log
analysis sequentially.
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