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Abstract—The construction of low complexity models for the
neural networks is an important issue in practical, real-world
scenarios. One of the most famous construction methods for
a simple neural network model is to represent weights and
activations by the 1-bit quantization, called binarized neural
networks (BNNs). However, it is still under research on how to
represent the gradient in the backpropagation of BNNs because
the activation function is the sign function whose gradients are
zero almost everywhere. One way to address this problem is to
approximate the gradient of the sign function by the Fourier
series representation. In this paper, we analyze the effect of
the period and the number of terms of the Fourier series
representation on the network accuracy. Since the period has
a direct relationship with the degree of the approximation for
the sign function and the oscillation behavior of the gradient
function, the choice of the period significantly affects the accuracy
of the BNN model. The experiments on the CIFAR-10 dataset
demonstrate that a proper choice of the period can outperform
the conventional BNNs with straight through estimator.

Index Terms—Binary neural network (BNN), Fourier series
representation (FSR), gradient approximation, period, Straight
through estimator (STE)

I. INTRODUCTION

Recently, machine learning techniques have been applied
to a wide range of engineering fields and make a remarkable
achievement in such fields. One of the most famous examples
is superhuman performance in vision recognition with con-
volutional neural networks (CNNs) [1]. However, CNNs are
not suitable for low-complexity applications such as mobile
devices because CNNs need lots of memory and computation
(energy) requirements. Since mobile devices (e.g., smartphone,
laptop) have several limitations of a small battery, insufficient
memory, and low GPU performance, many researchers have
proposed several methods such as AlexNet [1], VGGNet [2],
and MobileNetV2 [3] to implement cost-efficient architectures,
and 1x 1 convolution [4] to reduce the computational complex-
ity of the arithmetic operation.

Another promising way to reduce the hardware cost dramat-
ically is binarized neural networks (BNNs) [5], where weights
and activations are represented by the 1-bit quantization.
BNNs have a competitive advantage over other methods in
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that they can be constructed from a given well-designed
neural networks without changing the key idea of underlying
architectures. However, the simply converted BNN using the
binary sign function is not feasible to train because the
gradient of the sign function is zero almost everywhere, which
hinders backpropagation in training. Therefore, BNNs need to
employ special techniques to facilitate backpropagation such
as straight through estimator (STE) [6] and the approximation
by the Fourier series representation (FSR) [7].

Using the FSR, we can transform a periodic function with
period T into the summation of n triangular functions. For
BNNS, the sign function is approximated by the summation of
n differentiable sinusoidal functions, and then their gradients
are used for the backpropagation [7]. However, in [7], they
did not consider the problem of selecting a proper period T’
and number of terms n.

In this paper, we investigate the effect of the period and
number of terms on the approximation of the sign function by
the FSR method and the resulting accuracy of the BNN model.
As the period T' decreases, the approximation becomes more
accurate around the zero-point, but a small period 7' induces
a problem of the fast oscillating in the gradient domain.
In addition, as the number of terms n increases, the FSR
represents the original function more accurately, but it grows
the computational complexity linearly. In other words, there is
a compromise on the period and number of terms to maximize
the accuracy of the model with a reasonable complexity.
We evaluate the model accuracy by simply replacing the
STE method with the FSR method under the given BNN
architecture [5]. Evaluation using the CIFAR-10 dataset shows
that the BNN with the FSR can outperform the BNN with the
STE if we choose proper values of the period and the number
of terms in the FSR.

The remainder of the paper is organized as follows. Section
IT introduces preliminaries for the BNNs and the STE method.
Section IIT describes the FSR method and its training algo-
rithm. Section IV shows the performance evaluation results
and discussions on the period and number of terms in the
FSR. Finally, conclusion is given in Section V.
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II. PRELIMINARIES
A. Binarized Neural Networks

The CNNs are included in a class of full precision neural
networks, where the weight matrix W and activation matrix
A are represented with 32-bit or 64-bit. Instead, the quantized
neural networks (QNNs) are those that represent the weight
and activation with lower precision. As the extreme case of
QNNs, BNNs use 1-bit to represent the binarized weight
matrix W and binarized activation matrix A’ using the sign
function, Sign(z), as

Sign(x) = {1’

71’

if x >0,
otherwise.

B. Straight Through Estimator (STE)

Since the gradient of the sign function is zero almost ev-
erywhere, training BNNs with the traditional backpropagation
method is nearly impossible. Thus, the STE method [6] is
proposed to train the conventional BNNs. The key idea of
the STE method is to alter the actual gradient to the coarse
gradient, which enables to train BNNs. The STE method
represents the coarse gradient of the sign function as

oC
~ Clip| —.—1,1
Ja Clp(aa’ )

where g, is real gradient, C' is the cost function, a € A is

the layer activation, and the clip function, Clip(z, —1,1), is
defined as
-1, ifzx<—1,
Clip(z,—-1,1) ={ 2, if —1<az<1, (1)
+1, otherwise.

Then, the gradient of (1), Clip’(z,—1,1) is given as

. 1, if —1<x<1,
Clip'(z, =1, 1) = {O, otherwise. @
Although the idea is simple, this method works pretty well. But
still, the model accuracy of such BNNs is not accurate enough
to satisfy practical demands. For those reasons, researchers
have tried to find a way to increase the model accuracy by
replacing the STE into BNN+ [8], DSQ [9], and FDA-BNN

[71.

III. FOURIER SERIES BNN

The FSR is a very useful mathematical tool to approxi-
mate an original function. A function with period 7' can be
represented by the summation of n triangular functions. Let
FSR(z;n,T) denote the FSR of the sign function, Sign(x),
with a period 7" and a finite number of terms n, which is given
as

n

50 + Z [cz COS ——

=1

2mix
T )

FSR(z;n,T)

+ s; sin

Algorithm 1 Training process of Fourier series BNN

Require: A layer weight matrix W, binarized weight matrix
W?, layer input ay, binarized layer input a} batchnormal-
ization parameter 6
Forward propagation:
for k =1 to L do

W,i’ < Binarize(W})
S az_lwlf
ay, < BatchNorm(sg, 0)
if £ < L then
al,; < Binarize(ay)
end if
end for
Backward propagation:
Compute g,, = ‘90 knowing ay,
for k=Lto1l do
if £ < L then
Jay, gaZFSR'(:E; n,T)(ay) 3)
end if
(9, 90, ) < BackBatchNorm(gy, , Sk, 0%)
9ab < Gsi Wllq)

k—1
Jwp 9,041

end for

{Accumulating the parameters gradients:}

for k=1to L do
0i+1 « Update(6y, 7, go,)
WtJrl « Clip(Update(Wy, 71, g ), —1, 1)
77“‘1 — Ay

end for

where ¢; and s; are the ith Fourier series coefficients. For the
sign function, the Fourier series coefficients are given as

¢; =0 for all 7 and s; = ino 1 ZlSO. s
0, otherwise.

Now we can express the FSR of the sign function as the

following reduced form

4 sin (2 + 1)

FSR(z;n,T) = — #, x| < T.
= 2i+1

Thus, the gradient of the FSR(z;n,T) is given as

Zcos 22—1—1 x,

The above approximation of the gradient can replace the
STE of BNNs. Algorithm 1 represents the Fourier series
BNN using the derived gradient of FSR'(z;n,T) in (4). Note
that the main part of the algorithm follows the conventional
BNN in [5], and we just replace the STE method with
FSR/(z;n,t) as shown in (3). During the backpropagation, the
backpropagated gradient from the (7 + 1)th layer is multiplied
with the gradient of the ¢th layer. The conventional BNN using
the STE method calculates the backpropagated gradient by (2)

FSR (z;m,T) lz] <T. &)
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TABLE I
MODEL ACCURACIES WITH n = 20 AT 100 EPOCHS FOR THE CIFAR-10

DATASET
Model Method  Period '  Accuracy(%)

VGG-Small STE 90.9
FSR 10 80.1

FSR 50 90.4

FSR 100 90.8

FSR 150 91.1

FSR 200 91.0

FSR 1000 87.4

Resnet-18 STE 86.2
FSR 10 53.0

FSR 50 86.0

FSR 100 87.0

FSR 150 85.2

FSR 200 84.8

FSR 1000 74.3

while our method calculates the backpropagated gradient from
the (¢ 4+ 1)th layer by (3).

IV. RESULTS AND DISCUSSION
A. Evaluation Result

We evaluate the proposed FSR method in the BNN on the
CIFAR-10 dataset. The CIFAR-10 dataset is one of the famous
image classification benchmark datasets. It consists of 50,000
training data and 10,000 test data. Each image consists of
32 x 32 color pixels. Tested BNNs architectures are based on
the VGG-small network and the ResNet-18 network. We train
the BNN model with the FSR by an optimized learning rate
setting in [5]. The stochastic gradient descent optimizer is used
with a momentum of 0.9 and a weight decay of 0.999. Test
environment builds on cuda toolkit==11.5 and pytorch. And
the GPU specification is RTX 2080 Ti.

The results are summarized in Table I and Table II, which
show that the period 7" and the number of terms n affect the
model accuracy. From the result in Table I, we can see the
model accuracy is improved by increasing 7' until a certain
point but is degraded after that. In addition, Table II shows
that the model accuracy is also improved as n grows but it
does not after n > 20.

B. Effect of the Period and Number of Terms in the FSR

Fig. 1 and Fig. 2 show the variation of FSR(z;n,T) and
FSR/(x;n,T) as a function of the period 7" and the number
of terms n, respectively. The results apparently show that the
better approximation for the sign function, Sign(z), can be
achieved by the smaller period 7' and the larger number of
terms n. Therefore, one can assume that a smaller period and
a larger number of terms lead to better performance. However,
the evaluation results in Section IV-A show that the smaller
period does not guarantee better performance, and neither
larger number of terms do too. We investigate the results and
draw the following discussions.

First, the selection of a proper period T is very important
to improve the accuracy of the model using the FSR method.

TABLE II
MODEL ACCURACIES WITH T" = 150 FOR VGG-SMALL AND T" = 100
FOR RESNET-18 AT 100 EPOCHS FOR THE CIFAR-10 DATASET

Model Method  Number of terms n Accuracy(%)
VGG-Small STE 90.9
FSR 5 88.3
FSR 10 90.0
FSR 20 91.0
FSR 50 90.8
Resnet-18 STE 86.2
FSR 5 80.6
FSR 10 84.6
FSR 20 87.0
FSR 50 85.3

Fig. 1(b) shows that small periods such as 7' = 10 induce
a large variation of the gradient near the zero-point x = 0,
which in turn causes the noisy gradient problem [11]. The
noisy gradient problem is the The noisy gradient problem
is known to interfere with the training of the network and
occur more often as the variation of the gradient increases
[11]. Thus, small periods are not preferable in terms of the
gradient. On the contrary, large periods such as 7' = 1,000
in Fig. 1(a) cannot achieve the accurate approximation for the
sign function. In other words, there is a trade-off between
the accuracy of the approximation and the noisy gradient
problem, which can be controlled by period 7. Thus, there
is a compromise on the period and Table II shows that the
proper period 7" is 150 that maximizes the model accuracy.

Second, it is unnecessary to increase the number of terms
n more than a threshold value because there is no additional
accuracy gain as n grows over the threshold while the compu-
tation complexity grows linearly by n. Table 2 shows that the
model accuracy has not improved over n > 20, which means
a finite value of n is sufficient.

V. CONCLUSION

In this paper, we investigated the effect of the period and
the number of terms in the FSR method for BNN. We replaced
the STE method with the FSR method and conducted the
evaluations with the various period and the various number of
terms in the FSR method. We show that the proper period of
the FSR method improves the model accuracy and the certain
number of the terms improves the model accuracy. Since the
proper period deals with a tradeoff between oscillation of
the approximated gradient and precision of the approximated
gradient of the sign function around the zero point, the proper
period guarantees the better performance. The number of
terms has a direct relationship with computational complexity.
However, the number of terms does not always improve the
model accuracy. Therefore, the proper number of terms is
enough to generate the best performance of the BNN model.
The experimental results proved that the proper period and
the number of terms in the FSR of BNNs outperform the STE
method in the model VGG-small network and the ResNet-18
network for the CIFAR-10 dataset.
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Fig. 1. Comparison of Sign(z) and FSR(z;20,T) with various values of 7" in terms of (a) original functions and (b) their gradients.
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Fig. 2. Comparison of Sign(z) and FSR(z;n, 100) with various values of n in terms of (a) original functions and (b) their gradients.
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