GCP공법 적용시 다짐관리에 대한 사례 연구

Case Study for the GCP(Gravel Compaction Pile) methods of compaction control

홍석봉1) · 이관호2) · 조성우3) Hong, Suk-Bong · Lee, Gwan-Ho · Cho, Seong-Woo

「00 산업단지 조성사업」현장은 남해안(부산, 김해)지역에 위치하여 연약지반이 분포되어 있다. 「00 산업 단지 조성사업」현장내 연약지반 처리과정 중 하천과 인접한 구간에 대하여 제방의 안정성을 확보하기 위하여 GCP (Gravel Compaction Pile)공법을 계획하였다.

현장내 제방은 Fig. 1와 같이 GCP공법이 제방 끝부분에 위치하고 제방상부의 지층이 연약하여 다짐시 하중 및 진동에 의한 지반변형 발생한 것으로 확인되었다. 대책방안으로 Table 1과 같이 제방하부 지층의 경우 제방 전체 활동에 대한 안정성 확보를 위하여 시방서에서 요구되는 GCP공법의 다짐도 확보 할 수 있도록 기존의 다짐도를 적용하였으며 제방상부의 경우 지반변형이 일어나지 않도록 다짐도를 관리하여 시공하였다.

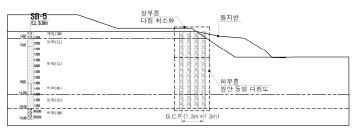


Fig. 1. River embankment cross section

Table 1. compaction control

Classification	Before change	After change
Case 1(Upper bank)	1.5m Gravel filling ⇒ 1.0m compaction	2.0m Gravel filling ⇒ A light blow
Case 2(Lower bank)	3.0m Gravel filling ⇒ 2.0m compaction	

Table 1(Before change) 및 Fig. 2와 같이 최초 시공 후 지반변형이 발생하여 Table 1(After change) 및 Fig. 3와 같이 제방상부는 2.0m 채움을 실시하고 경타로 변경하여 하중 및 진동을 최소화하였으며 제방하부는 전체 활동에 대한 안전성 확보를 위하여 동일하게 다짐관리를 실시하였다. 시공다짐 관리 결과 제방상부의 지반변형이 관찰되지 않고 안정성을 확보할 수 있는 GCP공법 시공이 이루어졌다.

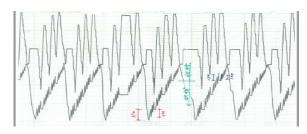


Fig. 2. Before Compaction control graph

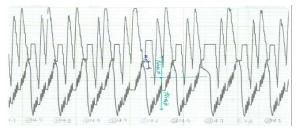


Fig. 3. After Compaction control graph

본 사례를 검토한 결과 제방전체의 활동안정성을 확보해야하는 구간을 제외한 제방상부의 연약한 구간에 대하여 다짐관리를 실시하여 지반변형의 최소화 및 안정성을 확보할 수 있는 시공사례를 보여주고 있다.

^{1) ㈜}태영건설 기술연구팀 선임사원(hsbbong@taeyoung.com)

^{2) ㈜}태영건설 기술연구팀 선임사원(khl428@taevoung.com)

^{3) ㈜}태영건설 기술연구팀 선임사원(chosw@taeyoung.com)