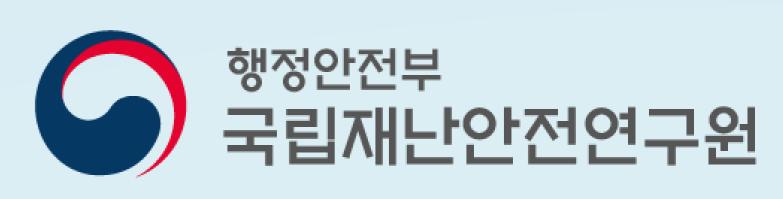
토석류로 인한 피해 양상 예측을 위한 점성토의 점도 특성 연구

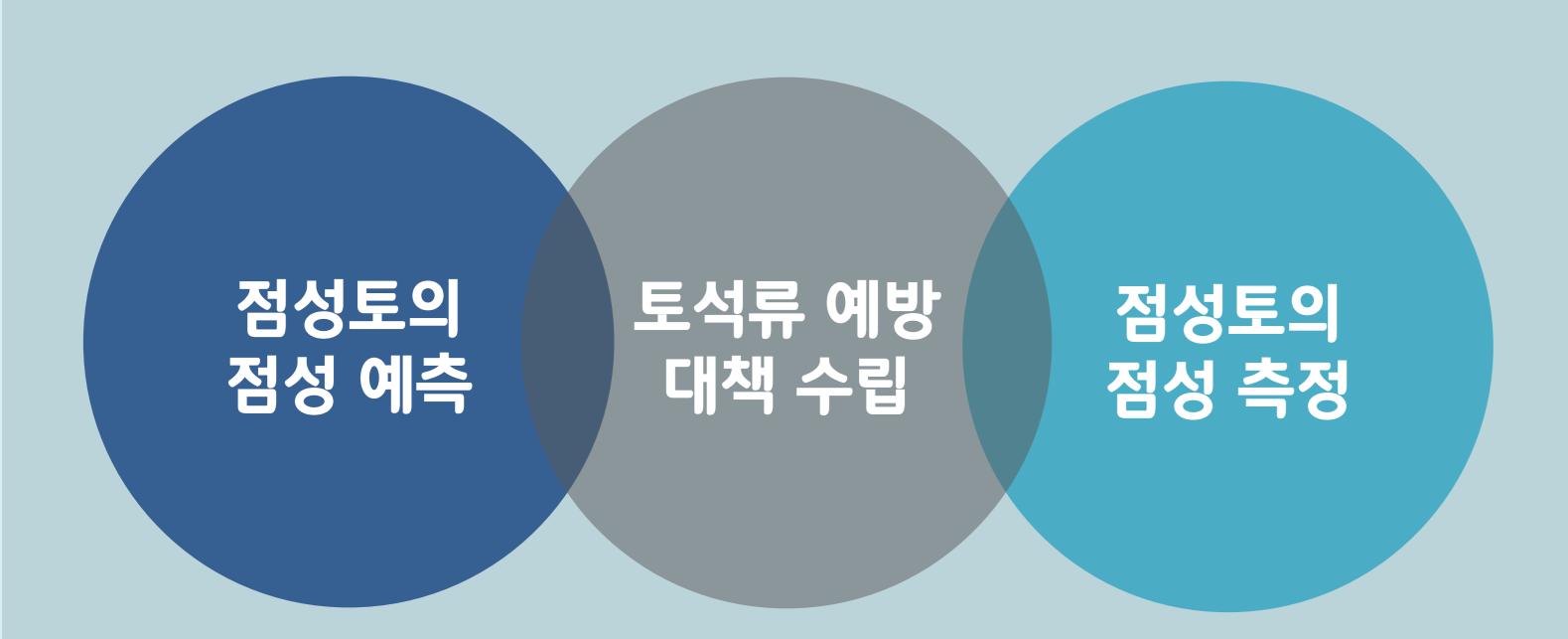

A study on viscosity properties of clay soils to explore the damage prediction by debris flow

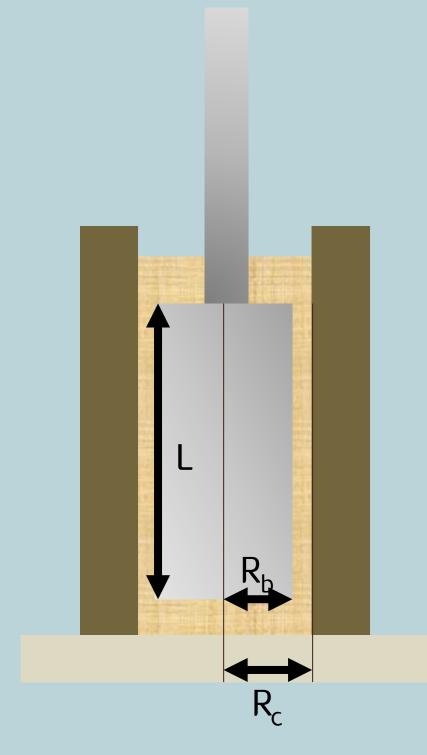
유재은⁽¹⁾ 정종원⁽²⁾

(1) 충북대학교 토목공학과 토질공학전공 박사과정 (2) 충북대학교 토목공학과 부교수

서론

- ❖국내에서 발생하는 자연재해 중 산지 토사 재해(토석류 및 산사태)는 33.8% 의 높은 비중을 차지함.
- ❖ 토석류는 흙, 암석, 물 등이 혼합되어 흐름이 발생하는 것을 의미하며, 집중 호우로 인해 주로 발생하며 산사태가 토석류로 발전하기도 함.
- ❖ 산지 토사 재해 중 가장 높은 비중을 차지하는 것은 토석류이므로 토석류에 대한 피해 양상 예측 및 적절한 방호 대책 수립이 필요함.
- ❖ 따라서, 본 논문에서는 토석류 유동 특성 파악에 중요한 매개변수인 점성토 의 점도 특성을 분석하였음.




실제 산사태 피해 사례

연구 목적

- ❖점토 광물(kaolinite, montmorillonite)의 점도 측정
- ❖체적 농도에 따른 측정된 전단 속도-전단 응력의 비를 통해 식 예측
- ❖경험식을 바탕으로 현장 흙의 점도 특성 예측
- ❖점도 특성 예측을 통한 토석류 피해 양상 예측

실험 방법

 $2Rc^2$ Shear rate $\Upsilon = \langle (sec^{-1})$ Shear stress $2\pi Rb^2L$ $(dyne/cm^2)$

Viscosity (poise)

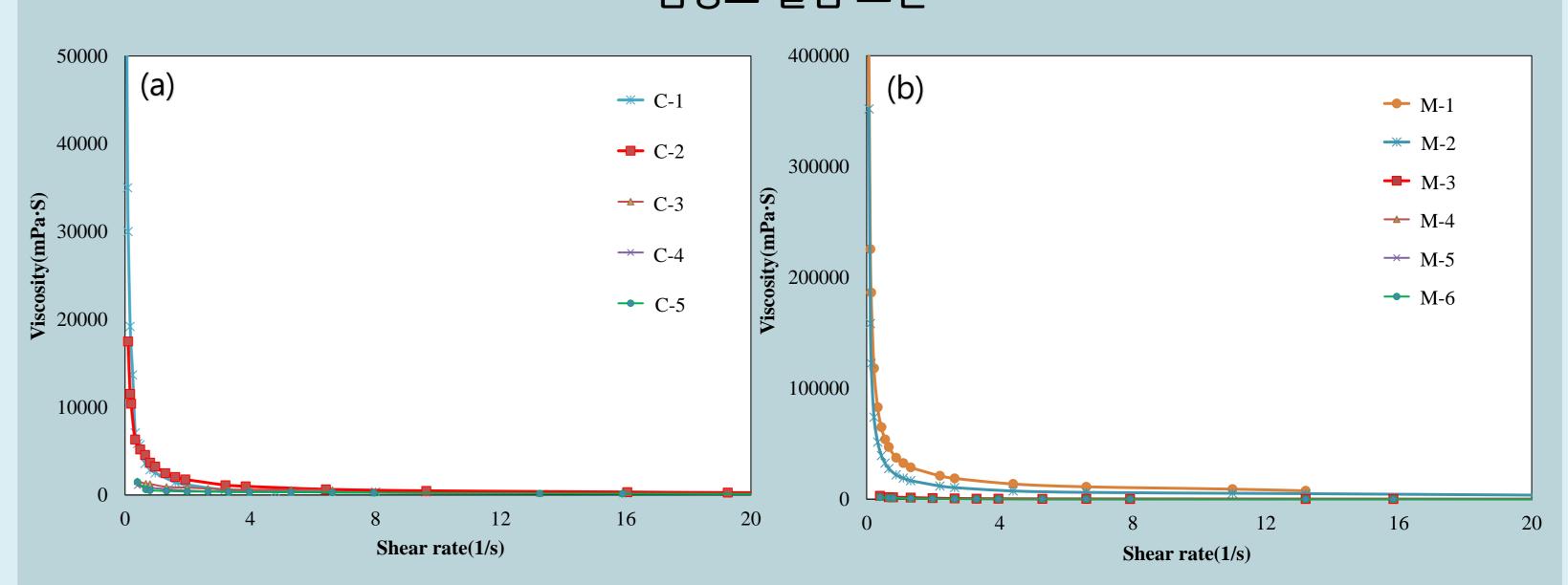
 ω : 각속도

R_c: 용기의 반지름(cm)

R_b: spindle의 반지름(cm)

M: Torque(dyne-cm)

L: spindle의 유효길이(cm)


- 본 장비를 활용하여 체적 농도에 따른 점성토의 점도 특성을 분석하였음.

• 본 연구에서 사용된 장비는 Brookfield 사의 Viscometer LV-DVE 모델임.

실험 결과

Classification	Clay	Weight of clay (g)	Weight of water (g)	water content (%)	Volumetric concentration (%)
C-1	kaolinite	133.33	200	150	20.10
C-2	kaolinite	100	200	200	15.87
C-3	kaolinite	80	200	250	13.11
C-4	kaolinite	66.67	200	300	11.17
C-5	kaolinite	50	200	400	8.62
M-1	montmorillonite	50	200	400	9.62
M-2	montmorillonite	40	200	500	7.84
M-3	montmorillonite	22.22	200	900	4.51
M-4	montmorillonite	20	200	1000	4.08
M-5	montmorillonite	18.18	200	1100	3.72
M-6	montmorillonite	16.66	200	1200	3.42

점성토 실험 조건

점성토 체적 농도에 따른 점도 특성 (a) : Kaolinite (b) : Montmorillonite

- ❖ 체적 농도에 따른 Kaolinite 5가지의 실험결과, 체적농도가 27.4%의 경우에 전단속도에 따라 점도가 685~80000mPa·s의 범위를 나타내며, 20.1%의 경우 200~56000mPa·s, 15.9%의 경우 198~17500mPa·s, 13.1%의 경우 579~6000mPa·s, 8.6%의 경우 45.4~1190mPa·s의 범위를 나타냄.
- ❖ 체적 농도에 따른 Montmorillonite 6가지의 실험결과, 체적농도가 9.62%의 경우에 전단속도에 따라 점도가 7620~404800mPa·s의 범위를 나타내며, 7.84%의 경우 3230~352000mPa·s, 4.51%의 경우 26.34~3080mPa·s, 4.08%의 경우 16.26~2280mPa·s, 3.72와 3.42%의 경우 각각 13.77~1600, 13.02~따른 700mPa·s의 범위를 나타냄.

결론

- ❖ 동일 시험 조건에서 kaolinite와 montmorillonite 점도는 각각 630mPa·s, 47040mPa·s로 약 75배의 차이가 나타남. 이는, 입자의 크기, 모양 및 구성 의 차이로 발생한 결과로 판단됨.
- ❖ Kaolinite 및 montmorillonite 두 종류 모두 전단속도-전단응력의 거동을 분석한 결과, Bingham의 거동을 보이는 것으로 판단됨.
- ❖ 추가적인 점성토의 점도 측정 후 결과를 통해 향후 토석류 해석에 중요한 매 개변수인 점성토의 점도를 예측할 수 있을 것으로 판단됨.

감사의 글

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. 2020R1A2C101235211) 및 행정안전부 극한 재난대응 기반기술개발사업의 연구 비 지원(2018-MOIS31-009)을 받아 수행되었습니다. 이에 깊은 감사를 드립니다.

참고문헌

1. Kang, H. S. (2017), Rheological Properties of Weathered Soil of Debris Flow Disaster Area with Volumetric Concentration of Sediment, J. Korean Soc. Hazard Mitig. 17(2), pp. 195^{\sim} 206.