

# 태풍 발생 시 미호천 유역의 유출량 산정을 위한 지역화 기초 연구

A Study on Regionalization for Estimation of Runoff in Typhoon of Miho Catchment

장형준<sup>1</sup>, 이효상<sup>1</sup>, 이호진<sup>1</sup>, 유국현<sup>1</sup>, 성선경<sup>1</sup> <sup>1</sup> 충북대학교 토목공학부

### 1. 서론

- 이상기후에 따른 여름철 집중호우가 빈번하게 발생하여 피해가 증가하고 있으며, 특히 태풍에 의한 피해가 큼.
- 2000년 이후 대형 태풍의 발생 횟수가 증가하고 있음에도 불구하고, 기존에 수립된 설계홍수량은 이를 반영하지 못함.
- 또한, 국내 대부분의 유역이 미계측 유역으로 구분되어 홍수량 산정에 큰 어려움이 발생하여, 이에 대한 연구의 필요성이 대두됨.
- 본 연구에서는 2000년 이후 발생한 태풍사상을 바탕으로 금강 미호천 9개 유역에 강우 유출모형을 적용하고, 결과를 바탕으로 매개변수 지역화 모형을 제시하였으며, 미계측 유역으로 가정한 청주 유역의 극한 홍수 사상을 모의하였음.

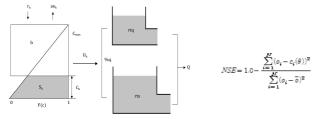
## 2. 연구유역 : 미호천

- 금강 상류에 위치하여 자연흐름을 방해하는 홍수 조절시설이 설치되어 있지 않은 표적인 자연유역으로 평가받음
- 유역면적은 1844.7km<sup>2</sup>로, 금강 전 유역면적 9914km<sup>2</sup>의 18.7%를 차지함.
- 강수량은 연평균 1.200mm이상으로 6~9월에 집중적으로 비가 내림. <표 1>은 무심 천 9개 유역 유역특성인자이며, 활용된 태풍 및 기간은 <표 2>와 같음.

A 수위관육소

1 백일
2 청주
3 합강
4 육산
5 서화
6 중쟁
7 가산
8 오왕

<그림 1> 미호천 유역


|      | <표 1> 태풍의 이름과 기간 |             |  |  |  |
|------|------------------|-------------|--|--|--|
| 사상   | 태풍               | 기간          |  |  |  |
| E1   | 루사               | 2002.8.23 ~ |  |  |  |
| L1   | <del>-</del> Λ   | 2002.9.6    |  |  |  |
| F2   | 10 HO            | 2003.9.6 ~  |  |  |  |
| LZ   | 01101            | 2003.9.19   |  |  |  |
| E2   | E3 나리            | 2007.9.13 ~ |  |  |  |
| E3   |                  | 2007.9.22   |  |  |  |
| E4   | 덴무               | 2010.8.8 ~  |  |  |  |
| E4   | - 덴구             | 2010.8.17   |  |  |  |
| E5   | 콤파스              | 2010.8.29 ~ |  |  |  |
|      |                  | 2010.9.8    |  |  |  |
| E6   | 볼라벤              | 2012.8.20 ~ |  |  |  |
| _ E0 |                  | 2012.9.3    |  |  |  |

<표 2> 미호천 9개 유역의 유역특성인자

| 유역  | Area(km²) | ALTBAR(m) | Form<br>Factor | Drainage<br>Density | SAAR(10) | FARL | CN    |
|-----|-----------|-----------|----------------|---------------------|----------|------|-------|
| 북일  | 909.1     | 151.17    | 0.25           | 2.08                | 1221.9   | 0.92 | 67.42 |
| 청주  | 178.92    | 158.55    | 0.18           | 2.4                 | 1191.71  | 0.98 | 71.66 |
| 가산  | 187.72    | 141.46    | 0.27           | 1.70                | 1199.39  | 0.95 | 68.81 |
| 합강  | 1848.83   | 135.56    | 0.21           | 2.41                | 1225.07  | 0.95 | 69.07 |
| 증평  | 124.15    | 150.26    | 0.40           | 2.43                | 1206.13  | 0.96 | 69.33 |
| 미호교 | 1854.98   | 136.7     | 0.28           | 2.38                | 1191.71  | 0.98 | 63.00 |
| 오창  | 574.46    | 153.72    | 0.20           | 1.91                | 1221.33  | 0.91 | 66.01 |
| 옥산  | 342.38    | 152.76    | 0.25           | 3.05                | 1215.85  | 0.98 | 69.34 |
| 석화  | 1599.95   | 142.89    | 0.27           | 2.29                | 1223.16  | 0.94 | 68.57 |

#### 2. 연구방법

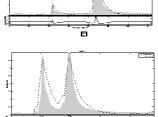
- PDM (probability Distributed Model)과 2PAR (2-conceptual reservoir in Parallel)를 조합한 강우 유출모형을 적용하여 단기수문사상특성을 분석함.
- 모형의 적용은 RRMT (Rainfall Runoff Modeling Toolkit)을 활용하여 검정을 실시 하
- 검정된 매개변수와 유역 별 특성인자를 바탕으로 통계분석 프로그램 SPSS (Statistical Package for Social Science)를 활용하여 선형 회귀식을 도출함.
- 산정된 선형 회귀식의 검증 및 분석을 위하여 목적함수 NSE (Nash Sutcliffe Effciency) 및 FH (Flow High)를 활용함.
- 목적함수 NSE는 <식 1>을 사용하였으며, 비교분석된 NSE\* = 1 NSE임.

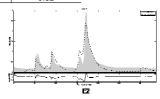


<그림 2> PDM 모형의 개략도

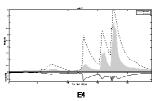
<식 1>

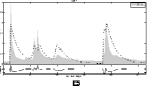
## 3. 결고


- 청주 유역을 미계측 유역으로 가정/제외한 미호천 8개 유역의 태풍사상(덴무, 콤파스, 볼라벤)별 검정 매개변수와 각 유역 대표 특성인자 사이의 선형 회귀식을 도출하였으며, 이를 강우 유출모형의 매개변수 지역화 모형으로 제시하였음.
- 다음은 <표 3>, <표 4> 및 <그림 3>은 태풍 볼라벤 기간에 대한 매개변수 지역화 모형 및 청주 유역의 검증 결과를 나타냄.

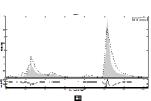

<표 3> 미호천 8개 유역의 수문 사상을 활용한 매개변수 지역화 모형 (태풍 볼라벤)

| 구분   |      | 매개변수 지역화 모형                                                                                              |      |
|------|------|----------------------------------------------------------------------------------------------------------|------|
|      | Cmax | 28312.042- 0.232Area- 16.431ALTBAR- 1368.112FormFactor+409.157Draina geDensity- 12.363SAAR- 11726.44FARL | 0.88 |
| NSE* | rtq  | 279.83+0.002Area- 29.576FormFactor+7.392DrainageDensity- 0.138SAAR- 1 15.54FARL                          | 0.96 |
|      | %(q) | 0.208- 0.0001Area+0.009ALTBAR- 0.217DrainageDensity- 0.176FARL                                           | 0.73 |
|      | Cmax | 298.839+0.01Area+1.008ALTBAR- 61.371FormFactor- 0.478SAAR+2.179CN                                        | 0.90 |
| FH   | rtq  | - 39.124+0.004Area+0.254ALTBAR- 46.601FormFactor+0.021SAAR+21.089F<br>ARL- 0.338CN                       | 0.99 |
|      | %(q) | 3.25+0.00002Area+0.004ALTBAR- 0.27FormFactor- 0.002SAAR                                                  | 0.45 |


<표 4> 미호천 8개 유역의 매개변수 지역화 모형을 적용한 청주 유역의 검증 결과값(태풍 볼라벤)


| 사상          | 목적함수 |      |  |
|-------------|------|------|--|
| <b>√1</b> 8 | NSE* | FH   |  |
| E1          | 0.08 | 0.28 |  |
| E2          | 0.21 | 0.18 |  |
| E3          | 0.24 | 0.38 |  |
| E4          | 1.57 | 2.05 |  |
| E5          | 0.92 | 0.15 |  |
| E6          | 0.25 | 0.82 |  |












в



<그림 3> 미호천 8개 유역의 매개변수 지역화 모형을 적용한 청주 유역의 검증 수문곡선(목적함수: NSE\*, 태풍 볼라벤)

## ◢ 결로

- 미호천 8개 유역의 태풍 기간별 수문사상을 활용하여 도출한 매개변수 지역화 모형의 R<sup>2</sup> 값이 대체적으로 우수한 값을 보임.
- 지역화 모형을 적용한 청주 유역의 검증 수문곡선이 관측 수문곡선과 비교적 유사하게 모의되었으며, 특히 첨두 홍수량 부분을 잘 반영하였음.
- 매개변수 지역화 모형을 적용하여 청주 유역에 검증한 결과, E1, E2, E3 및 E6의 목 적함수 NSE\* 값이 0.3 이하의 우수한 값을 보임.
- 따라서, 제시된 매개변수 지역화 모형이 미계측 유역 적용에 적합한 성능을 보인 다고 판단됨.