현장에서의 동재하시험을 통한 순환자원 활용 말뚝고정액의 성능평가

Evaluation of Pile Fixing Material using Circulating Resources through the Dynamic Loading Test in the Field

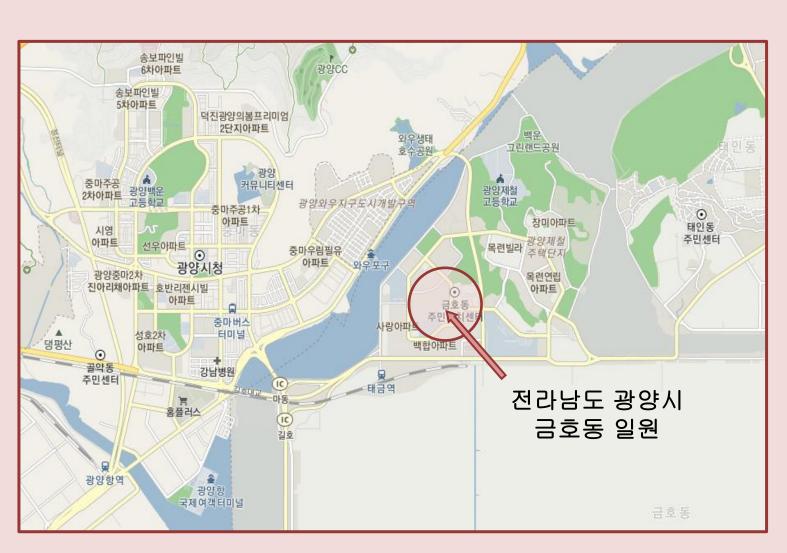
서세관, Seo, Se-Gwan / (주)지안산업 기술연구소 연구소장 송해민, Song, Hea-Min / POSCO건설 건축사업본부 과장 정한영, Jung, Han-Young / POSCO건설 건축사업본부 과장 조대성, Cho, Dae-Sung / ㈜지안산업 기술연구소 책임연구원

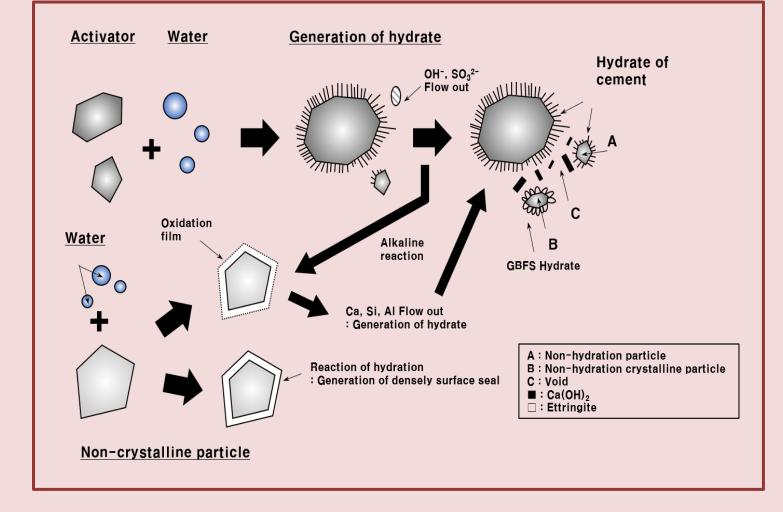
1 서 론

- 최근 우리나라에서는 다양한 규모의 건설공사가 다수 수행됨에 따라 경제성과 성능이 우수한 말뚝기초가 많은 현장에서 사용되고 있으며, 말뚝기초는 설치방법에 따라 크게 타입방식과 매입방식으로 구분됨.
- 타입방식의 경우, 말뚝을 직접 항타하기 때문에 안정성 확보에 필요한 지지력을 말뚝 선단에서 쉽게 확보할 수 있는 장점이 있으나, 항타로 인한 소음 및 진동으로 인한 문제로 인하여 지반을 먼저 천공한 후 말뚝을 삽입하고, 경타로 마무리하는 매입공법이 국내에서 주로 이루어지고 있음.
- 그러나 매입방식의 경우, 일반적으로 말뚝 직경보다 약 100mm가 큰 오거 (Auger)를 사용하여 굴착하기 때문에 말뚝의 고정을 위해서는 말뚝고정액의 사용이 필수적이며, 일반적으로 보통 포틀랜드 시멘트(OPC, Ordinary Portland Cement)와 고로슬래그 시멘트(BC, Blast furnace sang Cement)가 사용되고 있음.
- 그러나 시멘트는 카드뮴(Cd), 납(Pb), 6가 크롬(Cr⁶⁺) 등 다양한 중금속을 함유하고 있어 중금속 용출이 발생하는 경우, 주변 지반의 환경오염을 유발할 수 있고, 생산과정에서 1,400℃ 이상의 고온에서 석회석과 기타 점토질 광물을 소성시키기 때문에 다량의 온실가스를 배출하는 환경적 문제를 갖고 있어 시멘트를 대체할 수 있는 새로운 재료의 개발하기 위한 연구가 진행되고 있음.
- 본 연구에서는 이러한 연구의 일환으로 순환유동층 보일러의 연소과정에서 발생하는 연소재(Fly ash)를 산화칼슘(CaO)의 함유량이 많은 고로슬래그의 자극제로 사용함으로써 시멘트와 유사한 경화반응을 유도할 수 있고, 순환자원을 90% 이상 활용하여 폐자원의 선순환이 가능한 말뚝고정액을 현장에 적용하고, 동재하시험을 실시하여 성능을 평가하였음.

2 현장 조건

2.1 현장의 위치


순환자원을 90% 이상 활용하여 시멘트와 유사한 경화반응을 나타낼 수 있는 말뚝고정액을 적용한 현장은 전라남도 광양시 금호동 일원에 직원생활관을 건설하고 있는 현장으로, Fig. 1에 위치를 나타내었음.


2.2 말뚝의 제원

• 해당 현장에서는 구조물의 하중을 지지하기 위해 PHC말뚝을 선굴착 후 최 종경타공법(SIP 공법, Soil-Cement Injected Precast)으로 설치하였으며, Table 1에 말뚝에 대한 기본적인 제원을 나타내었음.

2.3 사용된 말뚝고정액

- 본 연구에 사용된 말뚝고정액은 순환유동층 보일러(CFBB, Circulating Fluidized Bed Boiler)의 연소과정에서 발생하며, 유리석회(free CaO)와 삼산화황(SO₃)의 함유량이 국내의 산업기준(KS L 5205)에 제시된 기준보다 높아 재활용에 어려움을 겪고 있는 고칼슘 플라이애시(high calcium fly ash)를 재활용한 제품임.
- 고칼슘 플라이애시를 고로슬래그의 알칼리 활성화 반응(alkali activated reaction)의 자극제로 사용하여 고로슬래그의 산화피막을 제거하고, Fig. 2에 나타낸 것과 같이 경화반응을 유도할 수 있음.

PHC Pile

Table 1. Specification of pile

Fig. 1. Location of field test Fig. 2. Hardening reaction of pile fixing material

Type	
Length (m)	
Diameter (mm)	

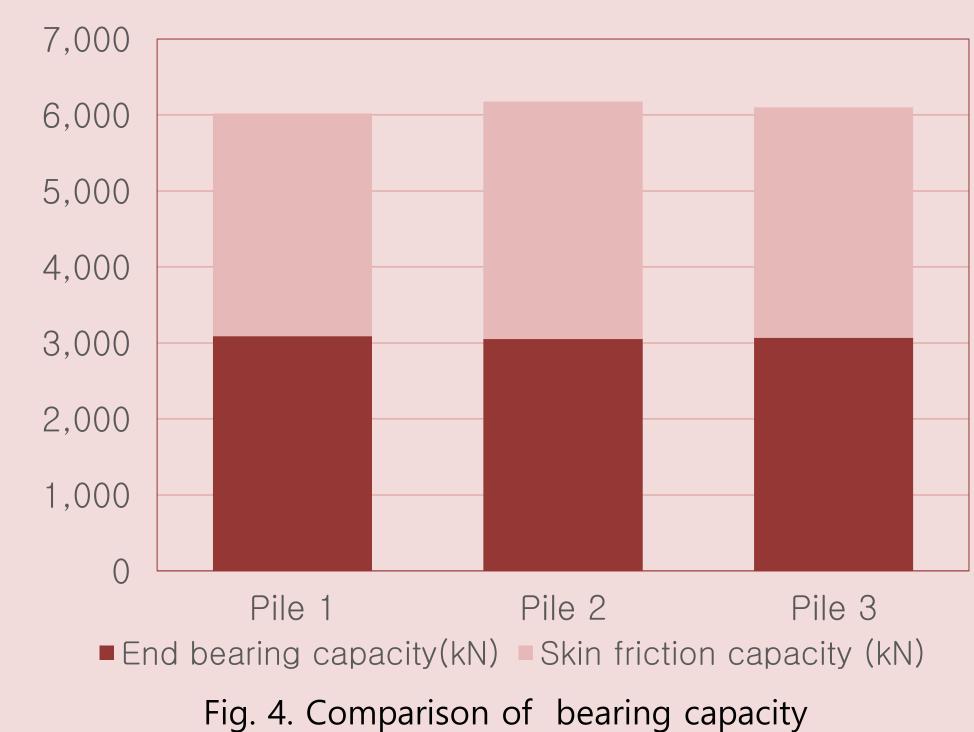
Length (m)	16.2 (Mean)
Diameter (mm)	60
Thickness (mm)	90
Method	SIP method

3 동재하시험 결과

• 동재하시험은 순환자원을 90% 이상 활용한 말뚝고정액이 사용된 PHC말뚝 3개에 대하여 시공 후 7일에 Fig. 3에 나타낸 것과 같이 Restirke 시험을 실시하였음.

Fig. 3. View of dynamic load test

• 동재하시험은 말뚝의 지지력 확보 여부를 검토하기 위해 선단부에 전달되는 압축응력(CSB)이 적어도 30MPa 이상이 되도록 시험을 실시하였고, 시험결 과를 Table 2~3에 나타내었음.


Table 2. Result of dynamic load test

No.	Test	CSX (MPa)	CSB (MPa)	TSX (MPa)	EMX (kN·m)
1	Restrike	37.2	29.9	4.7	100.6
2	Restrike	39.8	30.4	5.4	105.4
3	Restrike	42.6	30.6	5.2	97.8

Table 3. Result of CAPWAP analysis

No.	End bearing capacity (kN)	Skin friction capacity (kN)	Total bearing capacity (kN)	Allowable bearing capacity (kN)	Design bearing capacity (kN)
1	2,932	3,091	6,023	2,409	2,300
2	3,124	3,053	6,177	2,471	2,300
3	3,030	3,070	6,100	2,440	2,300

- 순환자원을 90% 이상 활용한 말뚝고정액에 대하여 동재하시험(Restrike)을 실시하고, CAPWAP 분석을 통해 산정된 선단지지력과 주면마찰력을 Fig. 4에 나타내었음.
- CAPWAP 분석결과, 모든 말뚝에서 전체지지력의 약 50.4%에 해당하는 3,000 kN 이상의 주면마찰력을 나타내는 것으로 분석됨.

- 또한, 말뚝에 대한 안전율(F_S, Factor of Safety) 2.5을 고려할 때 허용지지력은 2,400 kN 이상이며, 이러한 값은 설계지지력 2,300 kN 보다 큰 값이므로 구조물의 안정성 확보가 가능한 것으로 분석되었음.
- 그러나 이러한 결과는 해당 현장에 한정된 것으로 추후에 다양한 현장에 적용하고, 동일한 시험과 분석을 실시하여 다각적인 검토가 필요할 것으로 판단됨.

4 결 론

- 1. 순환자원을 90% 이상 활용한 말뚝고정액을 현장에 적용하고, 동재하시험 (Restrike)과 CAPWAP 분석을 실시한 결과, 순환자원을 90% 이상 활용한 말뚝고정액의 경우 전체 지지력(total bearing capacity) 중 약 50.4%에 해당하는 주면마찰력을 나타내는 것으로 분석되었음.
- 2. 순환자원을 90% 이상 활용한 말뚝고정액을 사용한 말뚝에 대해 전체 지지력에 안전율(F_S)을 고려하여 허용지지력(allowable bearing capacity)을 산정한 결과, 모든 말뚝의 허용지지력(평균 2,440kN/본)은 설계지지력 (2,300kN/본) 이상을 나타내어 구조물의 안정성을 확보할 수 있는 것으로 분석되었음.

본 연구는 2018년도 중소벤처기업부 및 한국토지주택공사(LH)의 공동재원으로 "민관공동투자기술개발사업"의 지원(S2690149)을 받았으며, 이에 감사드립니다.