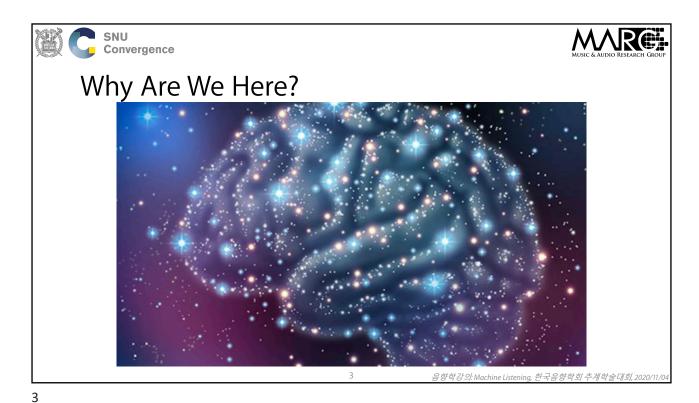
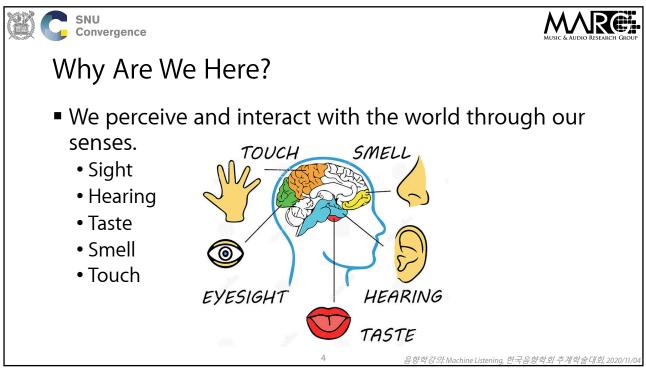


인공청각지능: 소리에서 의미로

Machine Listening: from sound to meaning

서울대학교 지능정보융합학과 음악오디오연구실 이교구





Why Are We Here?

- Unfortunately, research in hearing (audition) is outnumbered by research in sight (vision) in every measure:
 - Number of researchers/scholars/students
 - Number of books/papers/articles
 - Number of academic communities
 - And more...

5

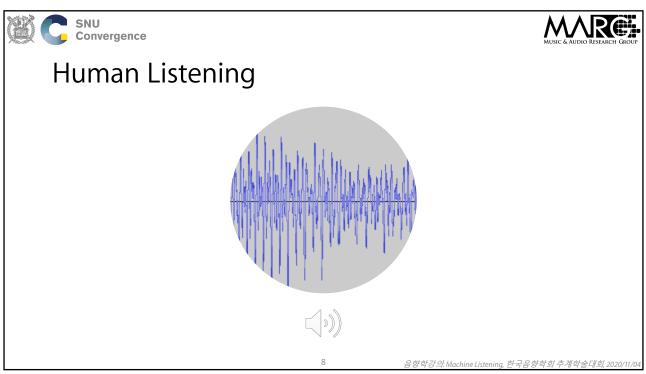
음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0

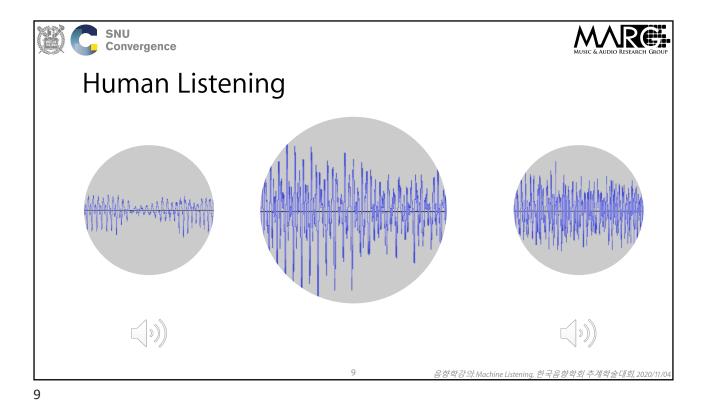
5

Why Are We Here?

6

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0





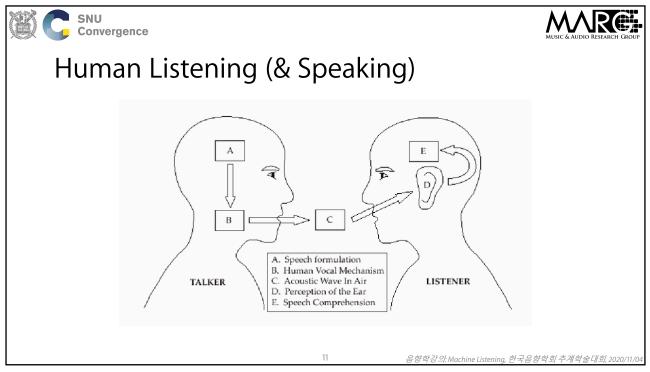
Convergence

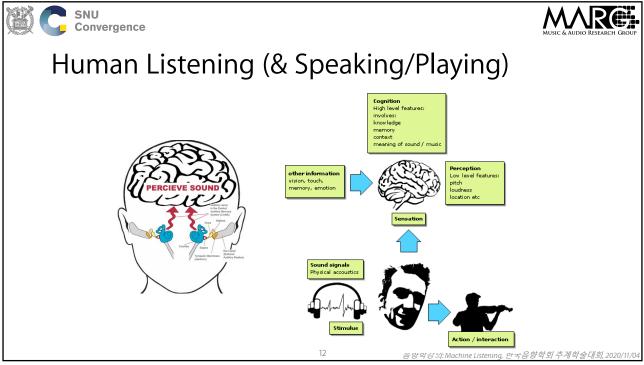
Human Listening

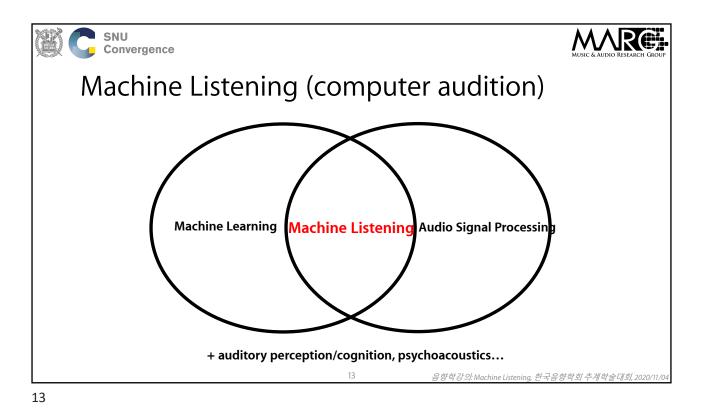
Arabic speech English speech (Adult directed) (Infant directed)

Wherearethesilences between words?

The segmentation problem Where are the silences between words?





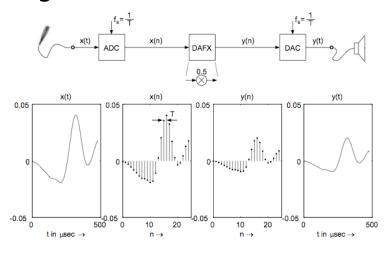


Fundamentals of Digital Audio Signal Processing

14

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0-

Digital Signals

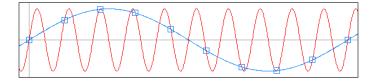


·향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

15

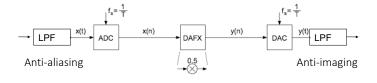
Sampling

- According to the sampling theorem: $f_s > 2f_{max}$ (Nyquist limit)
- Otherwise there is another, lower-frequency, signal that share samples with the original signal (aliasing)



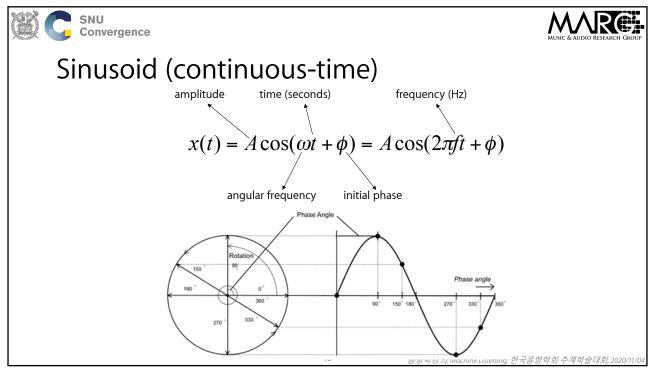
Related to the wagon-wheel effect: www.michaelbach.de/ot/mot wagonWheel/index.html

Anti-aliasing[imaging]



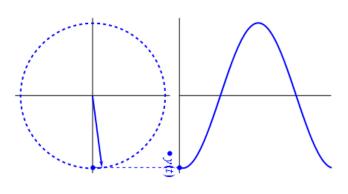
17

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04



Sinusoid (continuous-time) in action

$$x(t) = A\cos(\omega t + \phi) = A\cos(2\pi f t + \phi)$$



19

『향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0

19

Sinusoid (discrete-time)

• Since
$$t = \frac{n}{R}$$
, $x(n) = A\cos(\frac{2\pi fn}{R} + \phi)$,

where R =sampling rate

Fourier Theorem

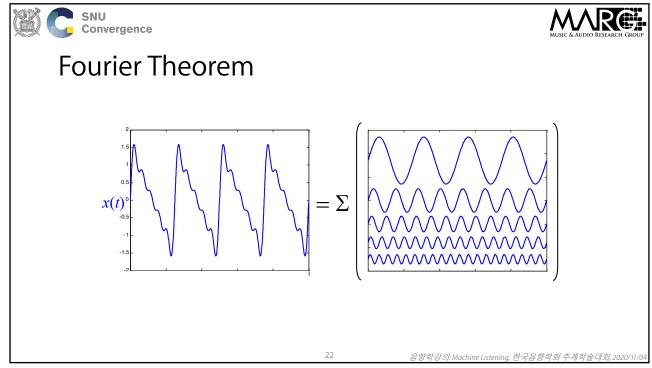
 Fourier theorem says: any periodic signal can be decomposed into a sum of sinusoids

$$x(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(2\pi k f t + \phi_k)$$

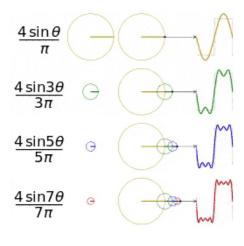
- f is called fundamental and 2f, 3f, ... are harmonics of fundamental
- Sequence of sinusoids with harmonic frequency is harmonic series

21

음향학강의: Machine Listening, 한국음향학회 주계학술대회, 2020/11/04



Fourier Theorem



23

『향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0

23

Fourier Transform (FT)

■ The Fourier transform of a continuous-time signal x(t) may be defined as

$$X(\omega) = FT[x(t)] = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt, \quad \omega \in (-\infty, \infty)$$

Discrete Fourier Transform (DFT)

• The Discrete Fourier Transform of a signal x(n) may be defined as

$$X(k) = DFT[x(n)] = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nk/N}, \quad k = 0,1,...,N-1$$

• The resulting N samples X(k) are complex-valued:

$$\begin{split} X(k) &= X_R(k) + j X_I(k) \\ &\left| X(k) \right| = \sqrt{X_R^2(k) + X_I^2(k)} \quad : \text{magnitude} \\ \varphi(k) &= \arctan \frac{X_I(k)}{X_R(k)} \quad : \text{phase} \end{split}$$

$$k = 0,1,...,N-1$$

25

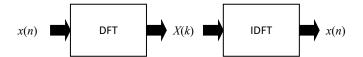
용향학강의: Machine Listenina. 한국음향학회 추계학술대회 2020/11/04

25

Inverse DFT (IDFT)

■ The DFT allows perfect reconstruction of a signal x(n) from its DFT X(k) via inverse DFT defined as:

$$x(n) = IDFT[X(k)] = \frac{1}{N} \sum_{k=0}^{N-1} X(k)e^{j2\pi nk/N}, \quad n = 0, 1, ..., N-1$$



26

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0

Fast Fourier Transform (FFT)

- An algorithm to efficiently compute the DFT is known as the Fast Fourier Transform (FFT) and its inverse as the IFFT
- Computational complexity
 - N-point DFT: $O(N^2)$
 - N-point FFT: $O(N \log N)$
- The FFT is so fast that even time-domain operations, like convolution, can be performed faster using FFT and IFFT instead:

$$(x*h)(n) = \sum_{m=0}^{N-1} x(m)h(n-m)$$

$$x(n) \longrightarrow X(k) \longrightarrow X(k) \longrightarrow X(k)H(k) \longrightarrow IFFT \longrightarrow (x*h)(n)$$

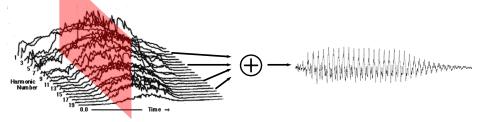
$$h(n) \longrightarrow H(k) \longrightarrow X(k)H(k) \longrightarrow IFFT \longrightarrow (x*h)(n)$$

27

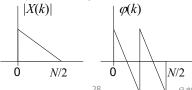
·향학강의: Machine Listenina. 한국음향학회 추계학술대회, 2020/11/04

27

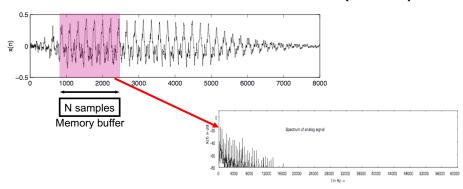
Revisiting the Fourier Theorem



- Any periodic signal can be described by a sum of a series of sinusoids with timevarying amplitudes and phases
- Thus a complex spectrum is just a snapshot of those sinusoids' parameters



Short-time Fourier Transform (STFT)



- For block processing, a short segment is sent to a buffer and processed as a block
- The DFT done in this way is called the short-time Fourier Transform or STFT

29

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

29

Frequency Resolution

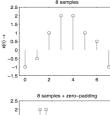
- Determined by how many sinusoids are used to describe a spectrum
- In N-point DFT or FFT, the frequency resolution is given by

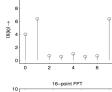
$$\Delta f = f_s/N$$

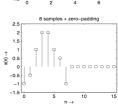
- $\ ^{\blacksquare}$ Intuitively, we can have finer frequency resolution if we increase N
- However, this results in poorer temporal resolution => tradeoff between frequency[spectral] and time[temporal] resolution

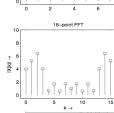
Zero-Padding

- lacktriangledown A possible solution to increase frequency resolution without increasing N *i.e.*, without losing time resolution
- Add zero-valued samples thus doesn't change spectrum itself to yield better spectral resolution







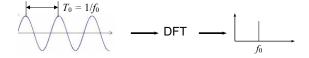


8 to 15 k → 10 15 k → 10 15 m + 1

31

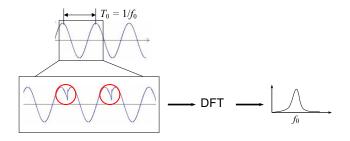
DFT of a Sinusoid

 In theory the DFT of a pure sinusoid results in a single sharp line at the frequency of the sinusoid



Spectral Leaking

- In practice, unless we perform f_0 -synchronous analysis, there are discontinuities (sharp changes) at the segment boundaries that introduce some noise. Thus the spectral line around f_0 is smeared.
- This is known as spectral leaking



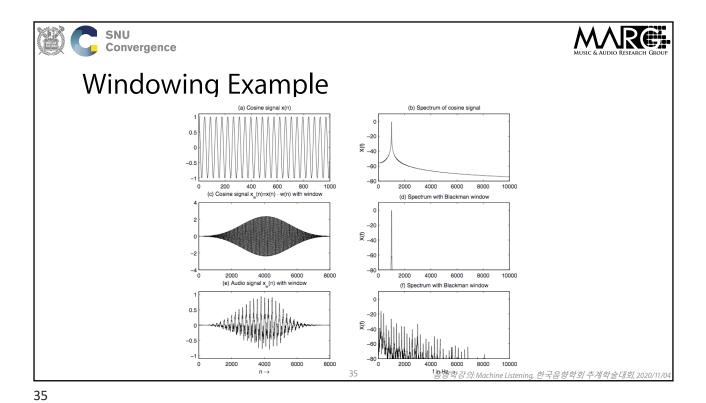
3

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

33

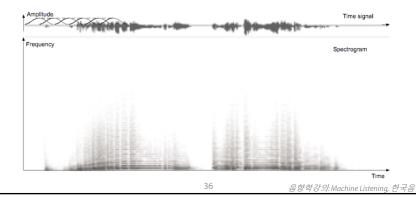
Windowing

- In order to reduce spectral leaking, we need to avoid abrupt changes between the segment boundaries
- This is done by multiplying a window whose amplitude gradually reaches zero at both ends, thus guaranteeing the continuity of a segmented signal when repeated
- Possible windows are: rectangular, hamming, hann, Blackman, Gaussian, and so on.



2-D Time-Frequency Representation

- Using the STFT, independent DFTs are calculated on windowed segments
- The segments usually overlap to compensate for the loss of temporal resolution
- Produces a 2-D spectrogram



Acoustic Features

37

음향학강의: Machine Listening, 한국음향학회 주계학술대회, 2020/11/0

37

Audio Feature Extraction

- Raw audio samples are:
 - Noisy
 - Redundant
 - Computationally inefficient
 - Not a good input to audio applications
- Need to convert them to more robust, compact yet meaningful representations called *audio features* or acoustic features

38

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0

Acoustic (audio) Features

- Spectral features
 - Spectral low-level features: spectral centroid, spectral flatness measure, spectral flux, etc.
 - Spectral envelope: LPCs, MFCCs, etc.
- Temporal features
 - ZCR (zero crossing rate), tempo histogram, novelty function, etc.
- Tonal features
 - PCP (pitch class profile) or chroma, chromagram, tonal centroid, etc.

39

음향학강의: Machine Listening, 한국음향학회 주계학술대회, 2020/11/0

39

Spectral Low-level Features

Spectral Centroid (SC)

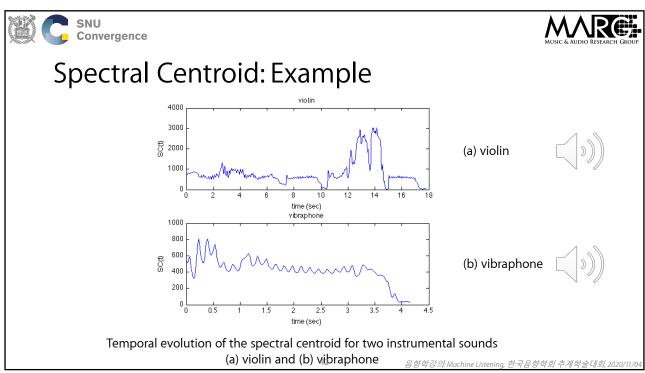
$$SC = \frac{\sum_{k=0}^{N/2} f_k |X(k)|^2}{\sum_{k=0}^{N/2} |X(k)|^2},$$

where f_k is the center frequency of kth bin and |X(k)| is the DFT

- Characterizes the center of gravity of the (power) spectrum
- Usually associated with the "sharpness / dullness (or brightness / darkness)" of a sound

41

음향학강의: Machine Listening, 한국음향학회 주계학술대회, 2020/11/04



Spectral Spread (SS)

$$SS = \sqrt{\frac{\sum_{k=0}^{N/2} (f_k - SC)^2 |X(k)|^2}{\sum_{k=0}^{N/2} |X(k)|^2}}$$

- Measure of the average spread of the spectrum in relation to its centroid
- Noisy, broadband signals have high SS while tonal sounds show lower SS

43

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

43

Spectral Flatness Measure (SFM)

$$SFM_{b} = \frac{\sqrt[N_{b}]{\prod_{k_{b}}|X(k_{b})|^{2}}}{\frac{1}{N_{b}}\sum_{k_{b}}|X(k_{b})|^{2}}, \quad k_{b} = k_{l}, k_{l} + 1, ..., k_{u}$$

where N_b is the number of spectral bins in a subband or $N_b = k_u - k_l + I$

- Reflects how "flat" a signal's power spectrum is
- Calculated as the ratio of the geometric mean and the harmonic mean
- Usually computed per spectral band (critical bands or bark bands, etc.), thus SFM_b
- Flatness for the whole spectrum is the average of the subband measures

Harmonic Spectral Centroid (HSC)

$$HSC = \frac{\sum_{h=1}^{N_h} f_h A_h}{\sum_{h=1}^{N_h} A_h}$$

where f_h and A_h are the frequency and the amplitude of the h_{th} harmonic, respectively

- Measure of the amplitude-weighted mean of the harmonic (spectral) peaks of the spectrum
- Compared to SC, HSC focuses only on harmonic (spectral) peaks, which are more musically meaningful in general
- Harmonic spectral spread (HSS) is similarly defined

45

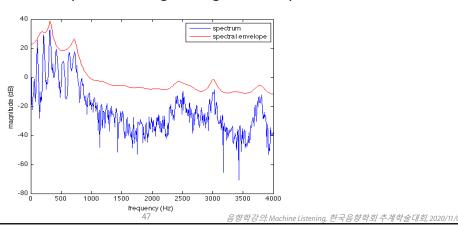
음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

45

Spectral Envelope

What is the Spectral Envelope?

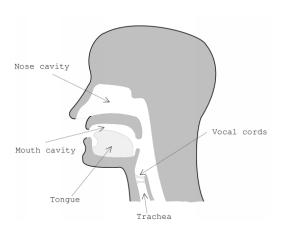
 Spectral envelope is a smoothed version of the spectrum that preserves its overall shape while neglecting its fine spectral structure



47

Human Speech System

- Vocal cords act as an oscillator, which generates a spectrally rich source signal
- Everything else is filter: vocal tract, mouth/nose cavity, tongue
- Thus called "source-filter" model
- These filters define the shape of the spectral envelope



18

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0-

Spectral Envelope Estimation

- A few popular techniques to estimate the spectral envelope
 - Channel vocoder: estimates the amplitude of the signal within several frequency bands
 - Linear prediction: estimates the parameters (or filter coefficients) of a filter that approximates the spectrum
 - Cepstrum analysis: inverse-FFT the log-spectrum and low-pass filters it to obtain the envelope

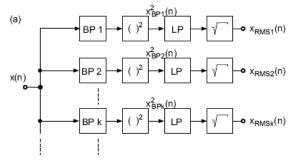
49

우향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

49

Channel Vocoder (1)

- Filters a signal with a bank of bandpass filters
- Calculates RMS of each bandpassed signal
- The more filters used, the finer spectral envelope estimated

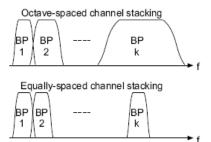


50

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0

Channel Vocoder (2)

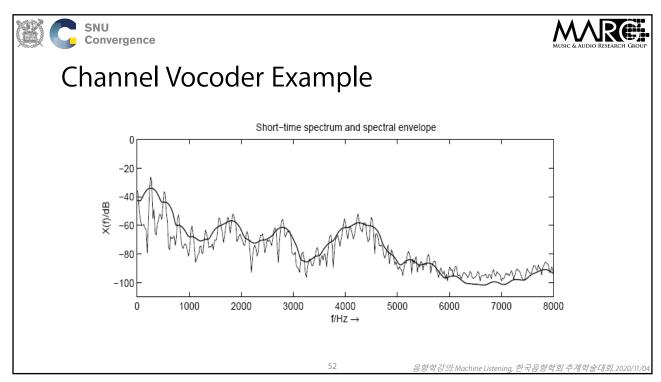
 In the frequency domain, multiply the spectrum with the filters' frequency response and square-root the sum of each filter's output



 The filterbank can be either linearly or logarithmically spaced (e.g., constant-Q or Mel-scale filter bank)

51

유향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04



Linear Predictive Coding (1)

• Linear predictive coding is a source-filter model that approximates the way a sound is generated as an excitation (a pulse train or noise) passing through an all-pole resonant filter

Resonant filter
(spectral envelope model)

Synthesized sound

- Widely used in speech and music applications
- Reduces large amount of data (e.g., N samples) to a few filter coefficients while preserving the overall shape

53

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

53

Linear Predictive Coding (2)

■ The nth sample x(n) is extrapolated, i.e., predicted by a linear combination of p past samples:

$$x(n) \approx \hat{x}(n) = \sum_{k=1}^{p} a_k x(n-k)$$

The residual error is given by

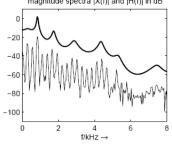
$$e(n) = x(n) - \hat{x}(n) = x(n) - \sum_{k=1}^{p} a_k x(n-k)$$

and we want to minimize this error

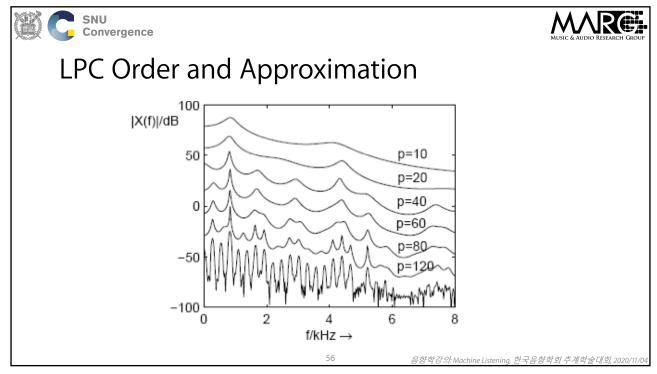
Linear Predictive Coding (3)

- The parameters a_k 's are called linear predictive coefficients (LPCs)
- The filter represented by these coefficients is a resonant filter and its frequency response represents the spectral envelope

■ The higher the filter order p, the closer the approximation is to the signal's spectrum $_{\text{magnitude spectra} \mid X(f) \mid \text{and} \mid H(f) \mid \text{in dB}}$



음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0



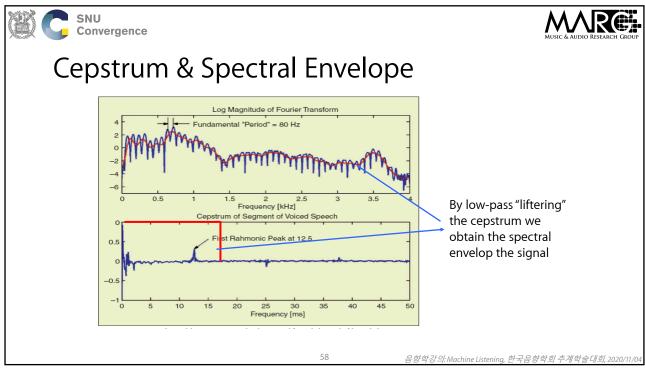
Cepstrum Analysis

- Cepstrum is the result of taking the FFT of the log-spectrum as if it were a signal
- Measures the rate of change in different spectral bands
- The name cepstrum was coined by Bogert *et al.* (1963) by reversing the first four letters of the spectrum (similarly for quefrency alanysis and liftering, etc.)
- For a real signal x(n), the real cepstrum is calculated as follows:

$$c_R(n) = IFFT(\log(|X(k)|))$$

57

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04



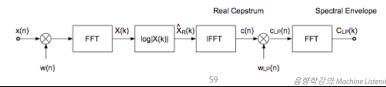
Spectral Envelope Estimation

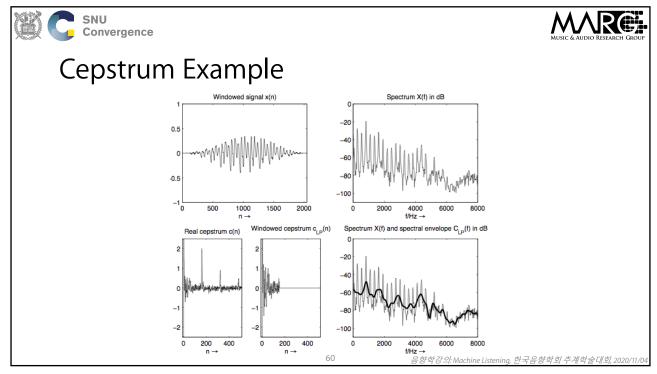
Using a low-pass window of the form:

$$\omega_{LP}(n) = \begin{cases} 1 & n = 0, N_1 \\ 2 & 1 \leq n \leq N_1 \\ 0 & N_1 < n \leq N-1 \end{cases}$$

we can low-pass the cepstrum and obtain the spectral envelope by:

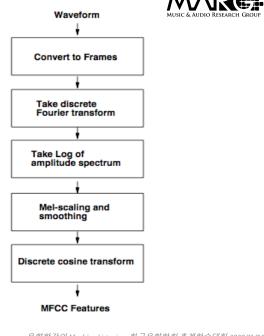
$$\begin{split} c_{LP}(n) &= c_R(n) \cdot \omega_{LP}(n) \\ C_{LP}(k) &= FFT[c_{LP}(n)] \end{split}$$





MFCC

- Mel-frequency Cepstral Coefficients (MFCCs) are a variation of cepstrum, motivated by human perception (Logan, 2000)
- Most extensively used in speech and music applications (e.g., speech recognition, genre classification, instrument recognition, etc.), due to its ability to compactly represent the spectral characteristics (just ~13 coefficients)



음향학강의: <u>M</u>achine Listening, 한국음향학회 추계학술대회, 2020/11/04

61

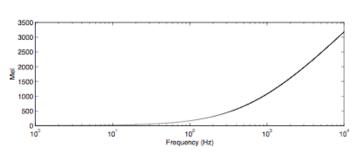
Mel Scale

- The Mel scale is a non-linear perceptual scale of pitches judged to be equidistant
- Approximately linear below 1 kHz and logarithmic above
- 1 kHz corresponds to 1000 Mel (reference point)
- With the Mel scale, a 1000-Mel tone should sound as twice as high as a 500-Mel tone (this is not true with linear frequency Hz)

Mel vs. Linear Frequency

■ The relation between Mel and Hz is given by

$$m = 1127.01048\log(1 + f/700)$$
$$f = 700(e^{m/1127.01048} - 1)$$

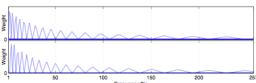


음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

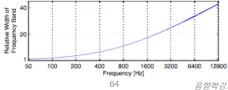
63

Mel-frequency Spectrum

To convert a linear spectrum to Mel we can use a filterbank of overlapping triangular windows:



• Such that the width d of each window increases according to the Mel scale, and the height of each triangle is 2/d



Decorrelation of Mel-scale Spectrum

- The resulting Mel-scale spectral vectors are highly correlated with each other; i.e. highly redundant
- Thus a more efficient representation of the log-spectrum can be obtained by applying a transform that decorrelates those vectors (Rabiner and Juang, 93)
- This decorrelation is commonly approximated by means of the Discrete Cosine Transform (DCT)
- The DCT is similar to a DFT but only for real numbers. It has the property that most of its energy is concentrated on a few initial coefficients (thus effectively compressing the spectral info)

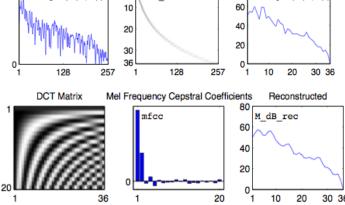
$$X_{DCT}(k) = \sqrt{\frac{2}{N}} \sum_{N=0}^{N-1} x(n) \cos[\frac{\pi}{N}(n+\frac{1}{2})k]$$

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0

65

Fast Computation of MFCCs Power Spectrum [dB]

10*log10(P(:,i))



Triangular Filter Matrix

mel filter

Mel Power Spectrum [dB]

10*log10(M(:,i))

MFCCs roughly model certain characteristics of human auditory perception: the nonlinear perception of loudness and frequency and spectral masking (Pampalk, 2006)

Tonal Features

67

음향학강의: Machine Listening, 한국음향학회 주계학술대회, 2020/11/0

67

Tonality

- Very important attribute in (Western) tonal music
- Explain the relationship among the tones
- Several musical attributes are closely related with tonality
 - Scale
 - Key
 - Pitch
 - Interval
 - Chord

68

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0

Tonal Features vs. Spectral Features

- Spectral features
 - Good for describing certain spectral characteristics (e.g., sharpness, noisiness, etc.)
 - Good for representing sonic texture or timbre by capturing overall frequency magnitude response (e.g., LPCs, cepstral coefficients, MFCCs)
 - Not good for tonal analysis: pitch- or tone-relevant information gets lost
- Tonal features retain tonal structure in musical audio
 - Tonal relations
 - Interval relations

69

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

69

Constant-Q Transform

Constant-Q Transform

• In DFT, the center frequency f_k of the frequency bin is given by

$$f_k = \frac{f_s}{N}k, \quad k = 0,1,...,N-1$$

where f_s is the sampling rate and N is the DFT size

- Therefore, all the frequency bins are linearly spaced
- However, musical scale as well as human hearing mechanism are logarithmic
- Brown proposed the constant-Q transform whose frequency resolution conforms to equal-tempered scale (1990)
- Well suited for pitch-related analysis

71

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

71

Constant-Q Transform (cont'd)

■ In constant-Q transform the kth spectral frequency is defined as

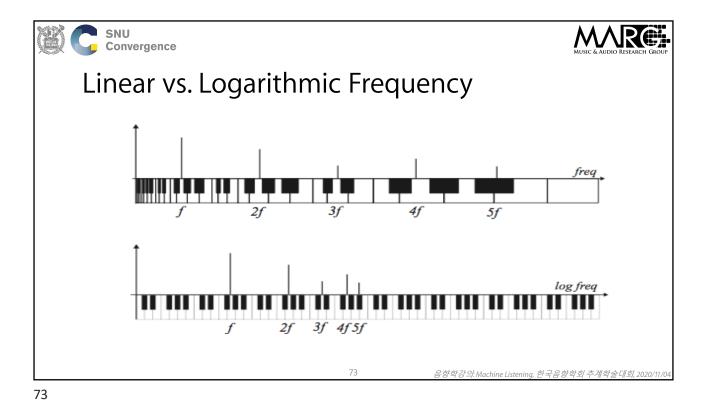
$$f_k = (2^{1/B})^k f_{\min}, \quad k = 0,1,...,N-1,$$

where B is the number of bins in an octave and f_{\min} is the minimum frequency set by user

 It is called "constant-Q" because Q or "quality factor" is constant along the frequency axis, which is defined as

$$Q = \frac{f_k}{f_w}, \quad k = 0,1,...,N-1,$$

where f_w is the filter width



Convergence

Computation of CQ Transform

 CQ transform can be obtained from the DFT using logarithmically-spaced filterbank

$$X_{cq}(k) = \frac{1}{N(k)} \sum_{n=0}^{N(k)-1} x(n) w(n,k) e^{-j2\pi Qn/N(k)}$$

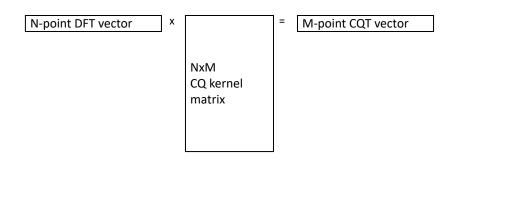
$$N(k) = f_s Q / f_k$$

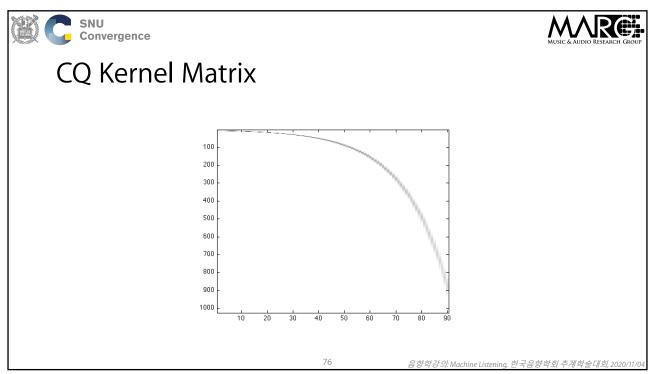
■ That uses a variable window length to obtain more resolution at lower frequencies and less at higher (logarithmic distribution of bins in frequency)

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0

Computation of CQT (cont'd)

 CQ transform can be efficiently computed using a CQ kernel which is a 2-d matrix that maps the DFT to the CQT





Chroma

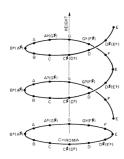
77

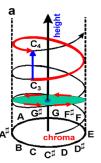
음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

77

Pitch Helix

• The pitch helix is a pitch space where linear pitch is wrapped around a cylinder, thus modeling the special relationship that exists between octave intervals





- Two dimensions
 - Height: naturally organizes absolute pitches from low to high
 - Chroma: represents the inherent circularity of pitch (*relative* relationship between pitch classes)

78

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0

Chroma (aka Pitch Class Profile)

- Good for describing relative pitch relationship, disregarding absolute pitch height
- Very useful for harmony analysis, key and chord, in particular
- A key and/or a chord can be described as a function of its pitch classes
- Almost universal feature for key/chord estimation applications
- Chroma as audio feature first introduced by Fujishima (1999)

79

유향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

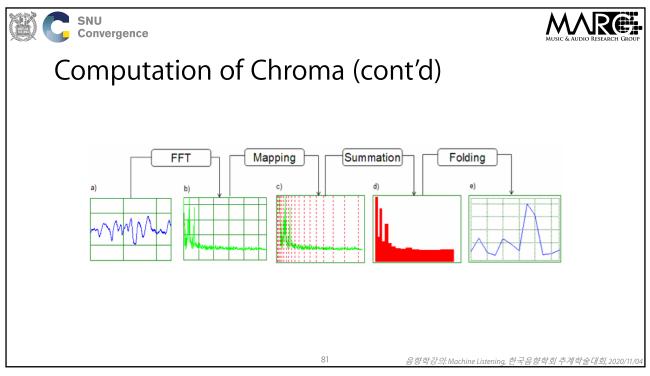
79

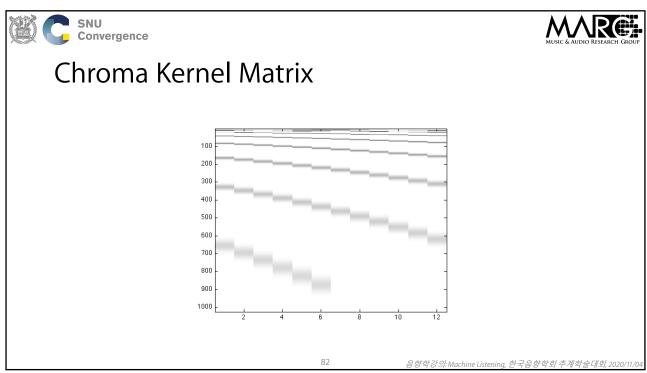
Computation of Chroma

Easily computed from the constant-Q transform by collapsing it to an octave, or

$$Chroma(b) = \sum_{m=0}^{M-1} \left| X_{CQ}(b+mB) \right|,$$

where $X_{CQ}(k)$ is the CQ transform, M is the total number of octaves of interest, B is the number of chroma bins in an octave, and b=1,2,...,B is the chroma bin index





Machine Learning

83

우향학강의: Machine Listening, 한국음향학회 주계학술대회, 2020/11/04

83

Machine Learning definition

- Arthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.
- Tom Mitchell (1998) Well-posed Learning Problem: A computer program is said to *learn* from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

84

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0-

Machine learning algorithms:

- Supervised learning
- Unsupervised learning

Others: Reinforcement learning, recommender systems.

85

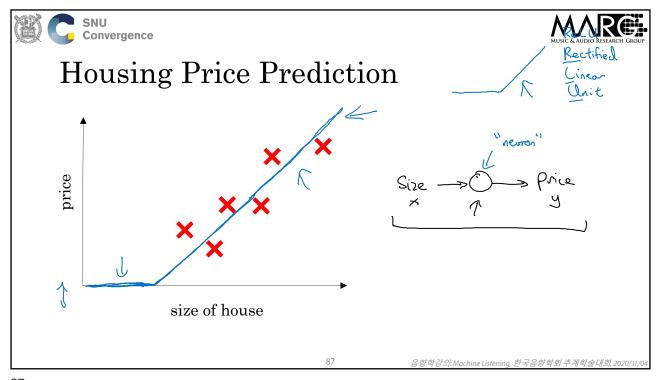
음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

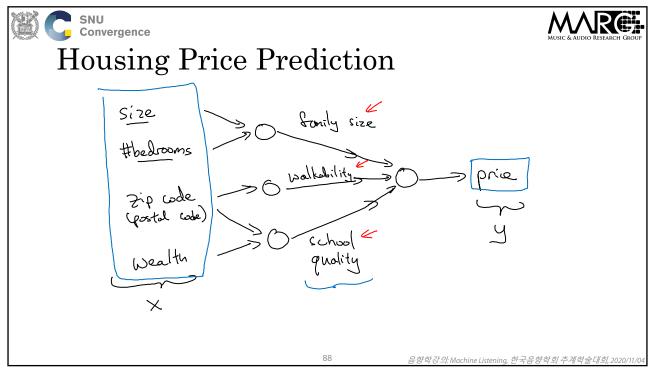
85

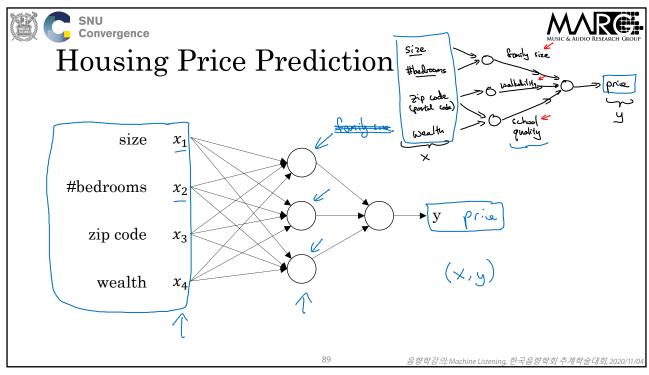
Introduction to Deep Learning

What is a Neural Network?

Lecture slides are from: https://www.coursera.org/learn/deep-neural-network

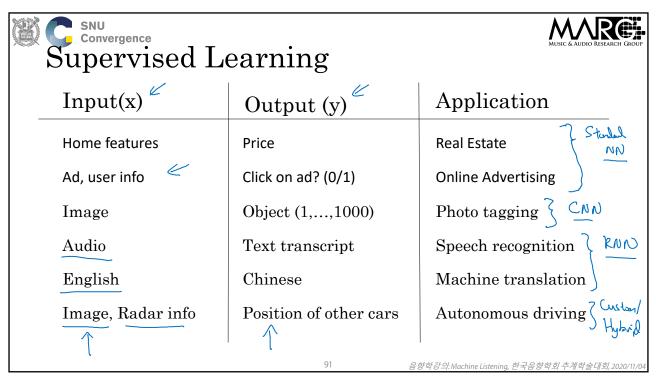


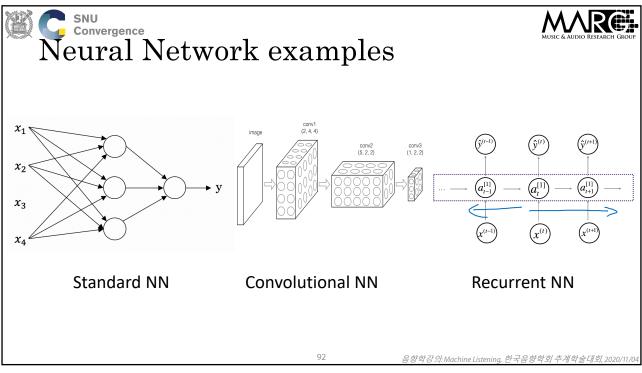




Introduction to Deep Learning

Supervised Learning with Neural Networks





Supervised Learning

Structured Data

Size	#bedrooms	 Price (1000\$s)
2104 1600	3	400 330
2400 : 3000	3 : 4	369 : 540

User Age	Ad Id	 Click
41	93242	1
80	93287	0
18	87312	1
:	:	:
27	71244	1

Unstructured Data



Audio

Image

Four scores and seven years ago...

Text

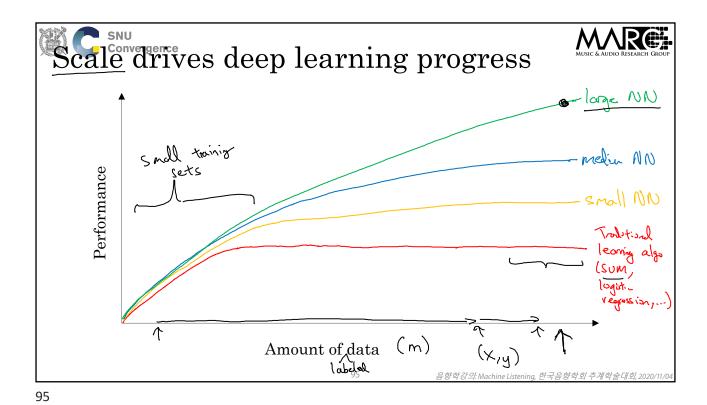
음향학강의:Machine Listening, 한국음향학회 추계학술대회, 2020/11/0-

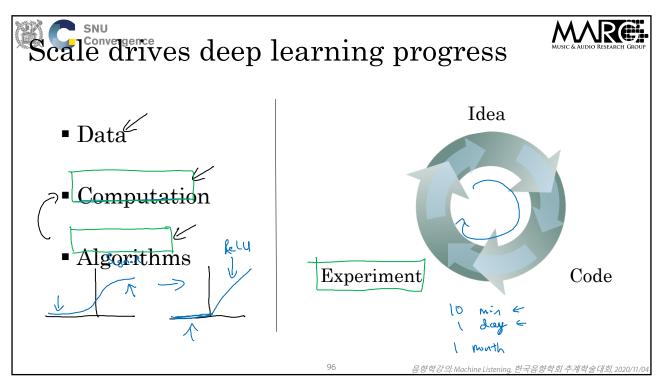
93

93

Introduction to Neural Networks

Why is Deep Learning taking off?

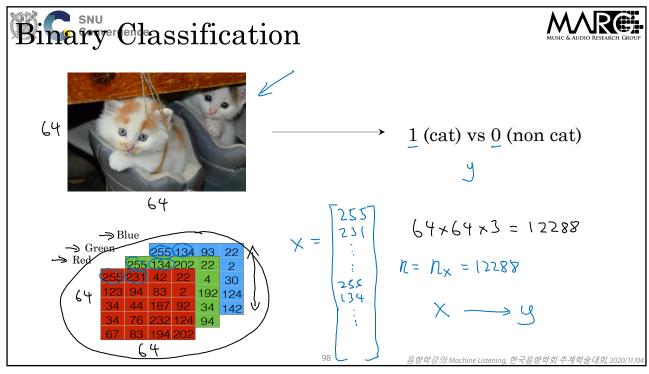




Basics of Neural Network Programming

Binary Classification

deeplearning.ai



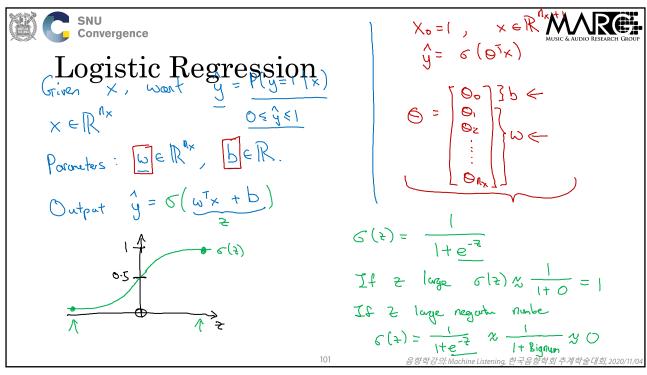
Notation:

(x,y)
$$x \in \mathbb{R}^{n_x}$$
, $y \in \{0,1\}$
 $m \in \mathbb{R}^{n_x}$, $y \in \{0,1\}$
 $m \in \mathbb{R}^{n_$

deeplearning.ai

Basics of Neural Network Programming

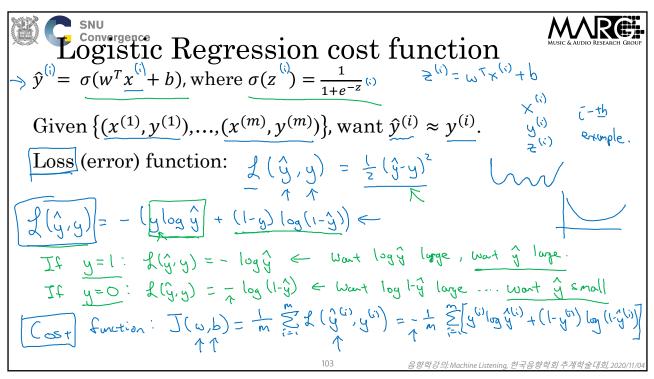
Logistic Regression



deeplearning.ai

Basics of Neural Network Programming

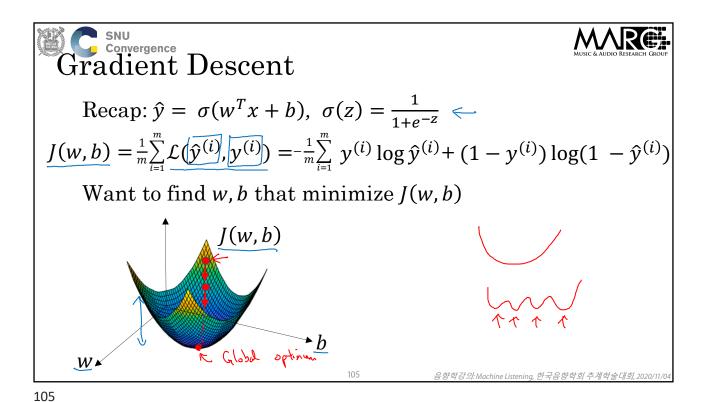
Logistic Regression cost function

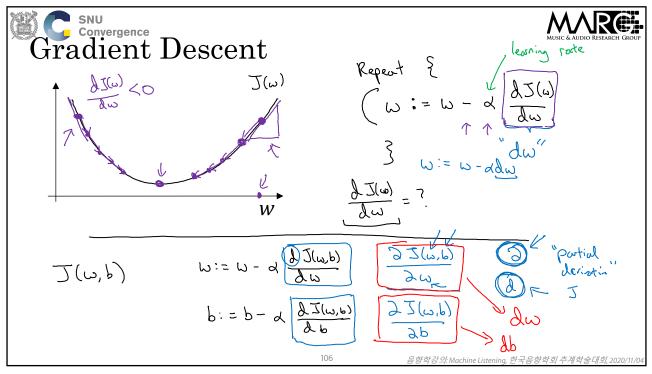


deeplearning.ai

Basics of Neural Network Programming

Gradient Descent





deeplearning.ai

Basics of Neural Network Programming

Logistic Regression Gradient descent

107

Logistic regression recap

$$\Rightarrow z = w^T x + b$$

$$\Rightarrow \hat{y} = a = \sigma(z)$$

$$\Rightarrow \mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

$$\frac{\chi_1}{\omega_1}$$

$$\frac{\omega_1}{\chi_2}$$

$$\frac{\chi_2}{\chi_2}$$

$$\frac{\chi_1}{\chi_2}$$

$$\frac{\chi_2}{\chi_2}$$

$$\frac{\chi_1}{\chi_2}$$

$$\frac{\chi_2}{\chi_2}$$

$$\frac{\chi_1}{\chi_2}$$

$$\frac{\chi_2}{\chi_2}$$

$$\frac{\chi_2}{\chi_2}$$

$$\frac{\chi_1}{\chi_2}$$

$$\frac{\chi_2}{\chi_2}$$

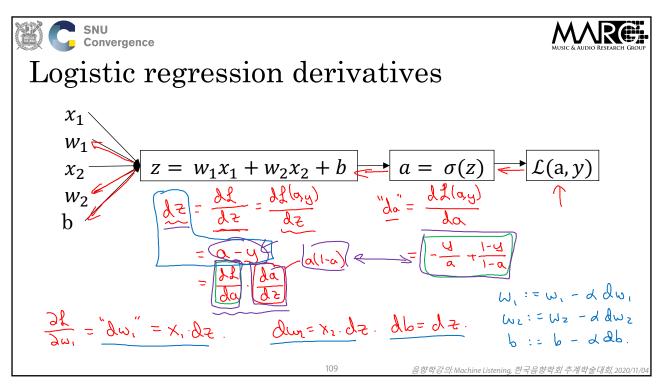
$$\frac{\chi_2}{\chi_2}$$

$$\frac{\chi_1}{\chi_2}$$

$$\frac{\chi_2}{\chi_2}$$

108

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0-

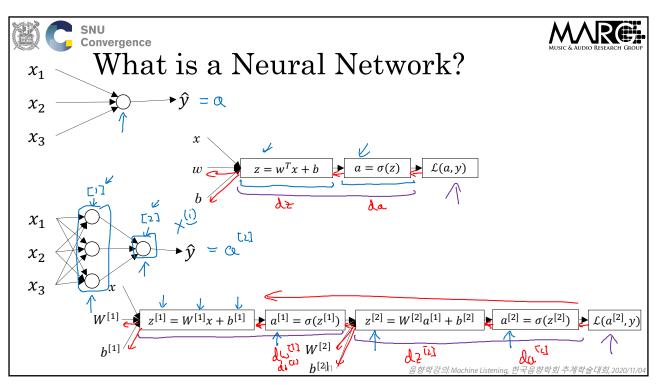


deeplearning.ai

One hidden layer Neural Network

Neural Networks Overview

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

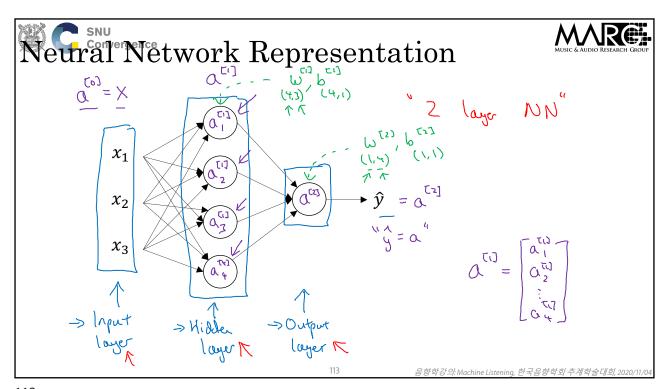


deeplearning.ai

One hidden layer Neural Network

Neural Network Representation

음향학강의: Machine Listening, 한국음향학회 추계학술대회 2020/11/04



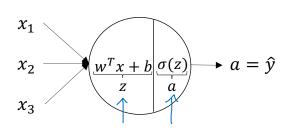
deeplearning.ai

One hidden layer Neural Network

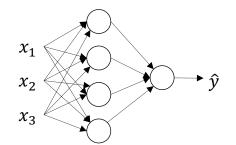
Computing a Neural Network's Output

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

Neural Network Representation

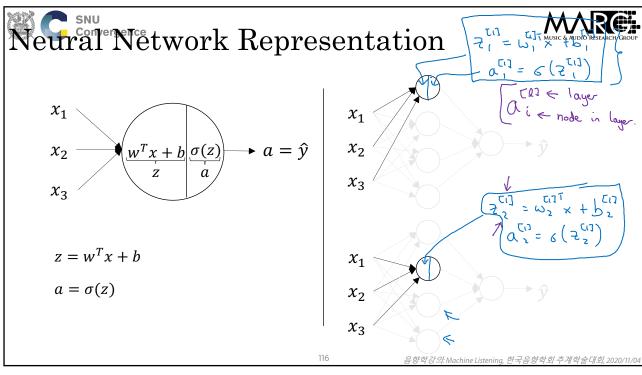


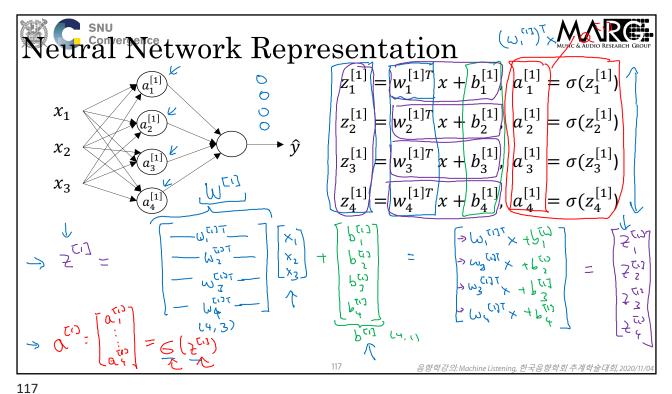
$$z = w^T x + b$$
$$a = \sigma(z)$$



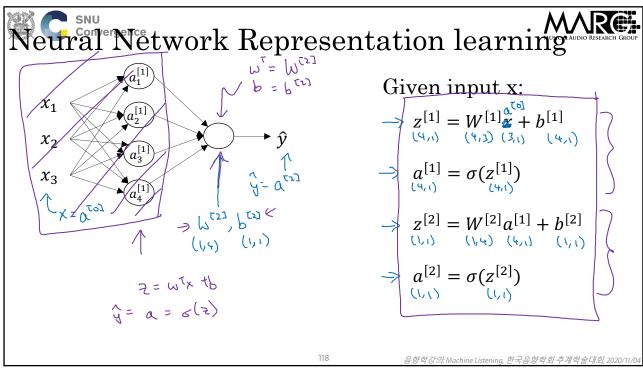
115

우향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04





11/



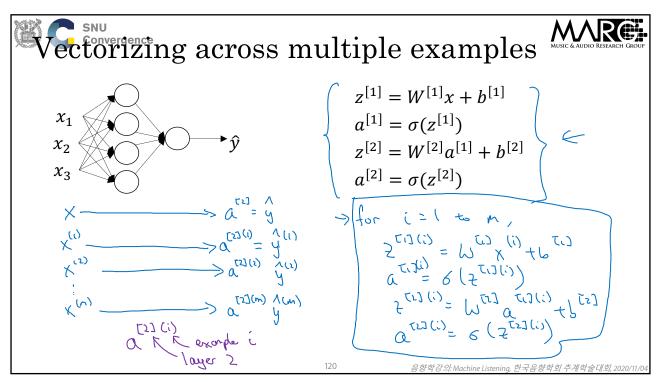
deeplearning.ai

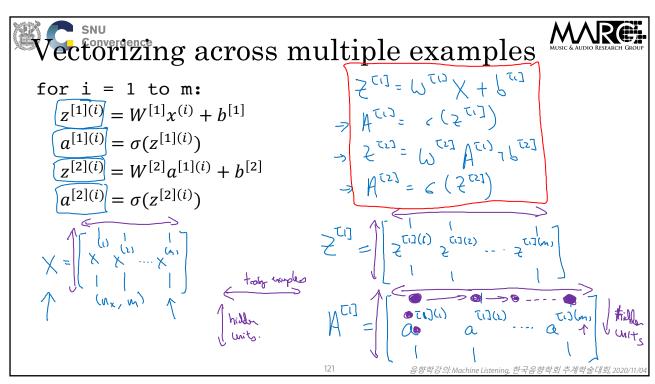
One hidden layer Neural Network

Vectorizing across multiple examples

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

119



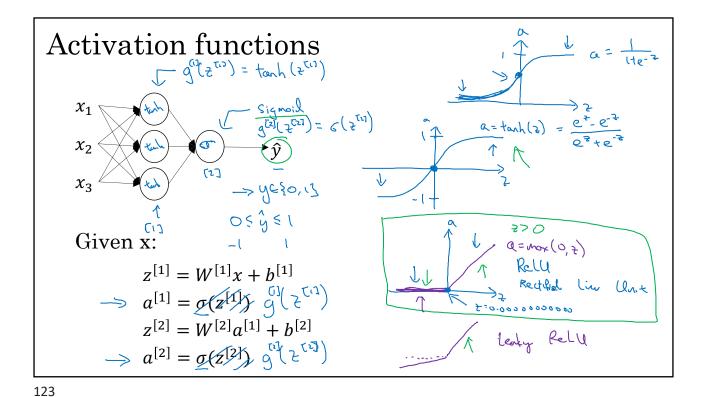


One hidden layer Neural Network

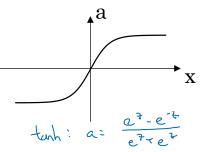
Activation functions

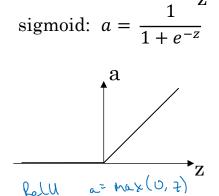
deeplearning.ai

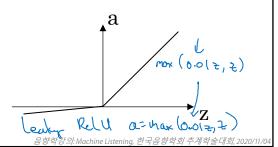
음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04



Pros and cons of activation functions







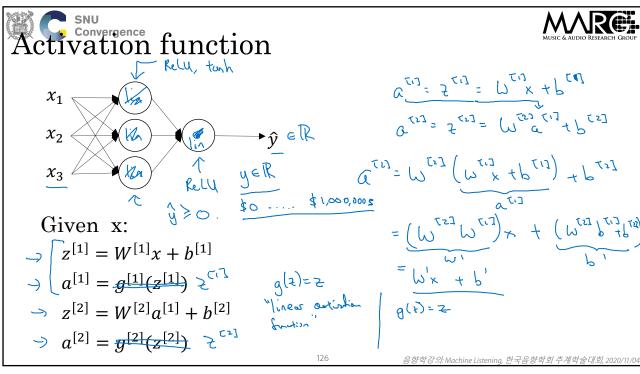
deeplearning.ai

One hidden layer Neural Network

Why do you need non-linear activation functions?

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

125



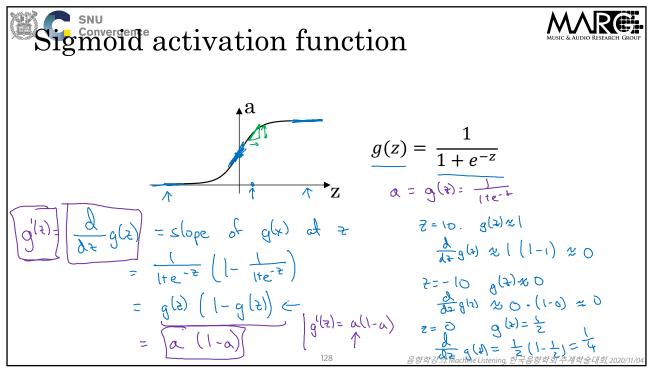
deeplearning.ai

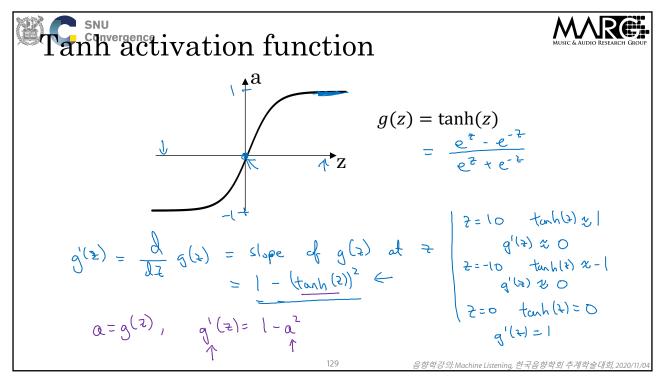
One hidden layer Neural Network

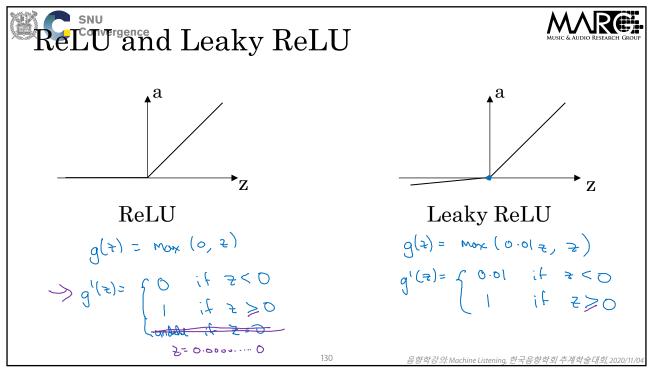
Derivatives of activation functions

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

127







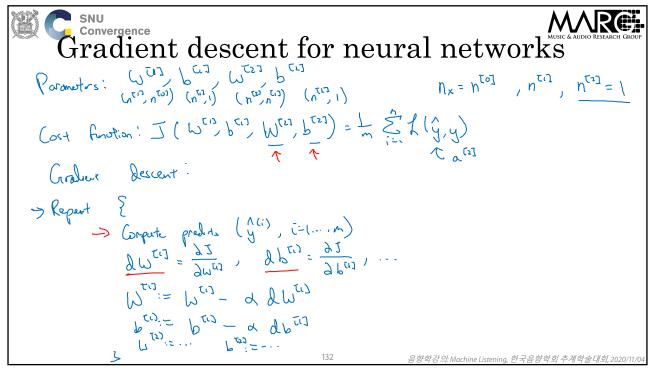
deeplearning.ai

One hidden layer Neural Network

Gradient descent for neural networks

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

13:



$$V_{LSJ} = \partial_{LSJ} (S_{LSJ}) = O(S_{LSJ})$$

$$V_{LSJ} = P_{LSJ} V_{LSJ} + P_{LSJ}$$

$$S_{LSJ} = P_{LSJ} (S_{LSJ}) \leftarrow$$

$$S_{LSJ} = P_{LSJ} (S_{LSJ}) \leftarrow$$

$$S_{LSJ} = P_{LSJ} (S_{LSJ}) \leftarrow$$

Formulas for computing derivatives

Formulas for computing derivatives

$$\begin{cases}
\sum_{i=1}^{C1} = \sum_{i=1}^{C1} X_i + \sum_{i=1}^{C1} X_i
\end{cases}$$

$$\begin{cases}
\sum_{i=1}^{C1} = \sum_{i=1}^{C1} X_i + \sum_{i=1}^{C1} X_i
\end{cases}$$

$$\begin{cases}
\sum_{i=1}^{C1} = \sum_{i=1}^{C1} X_i
\end{cases}$$

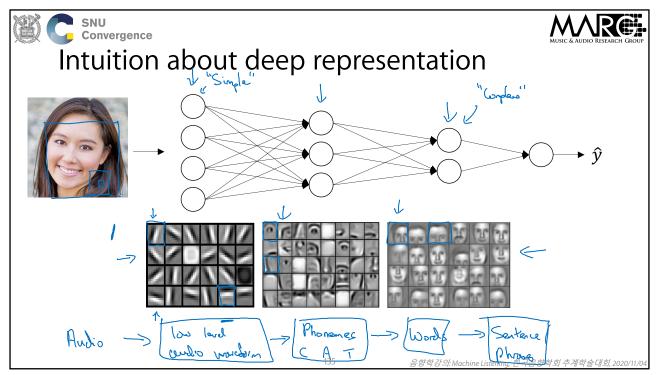
$$\begin{cases}
\sum_{i=1}^{C1$$

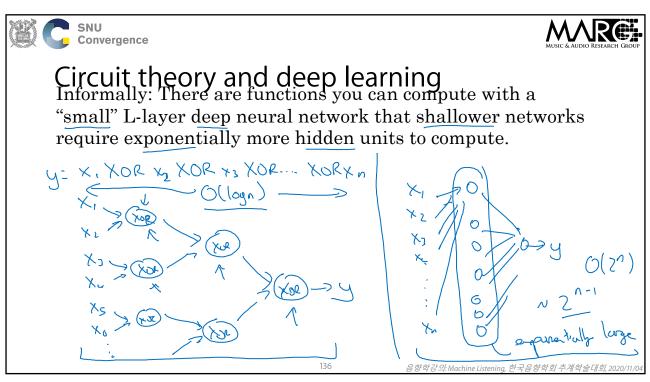
deeplearning.ai

Deep Neural **Networks**

Why deep representations?

음향학강의: Machine Listening, 한국음향학회 추계학술대회,





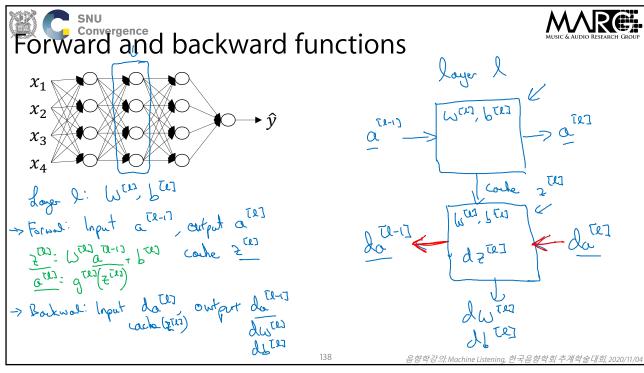
deeplearning.ai

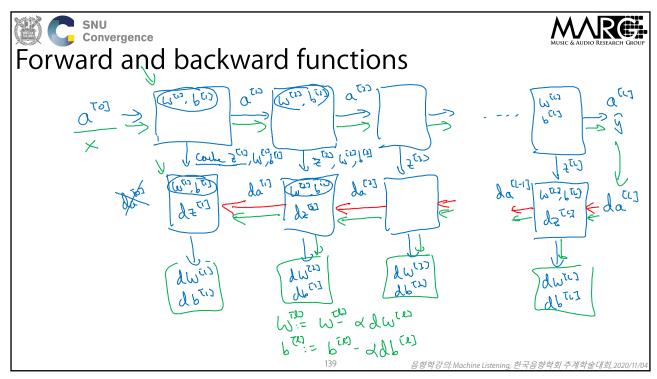
Deep Neural Networks

Building blocks of deep neural networks

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04

137

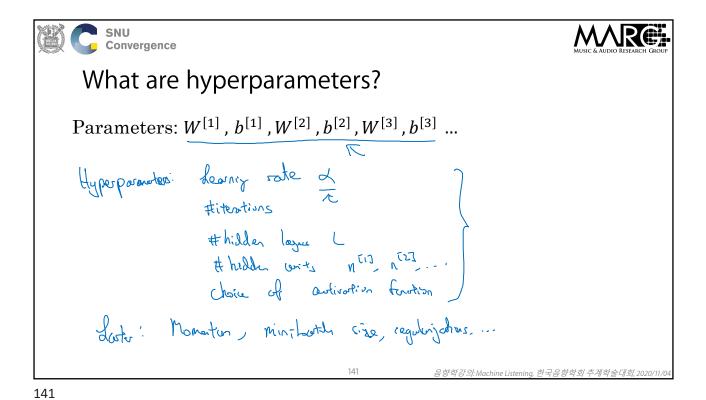


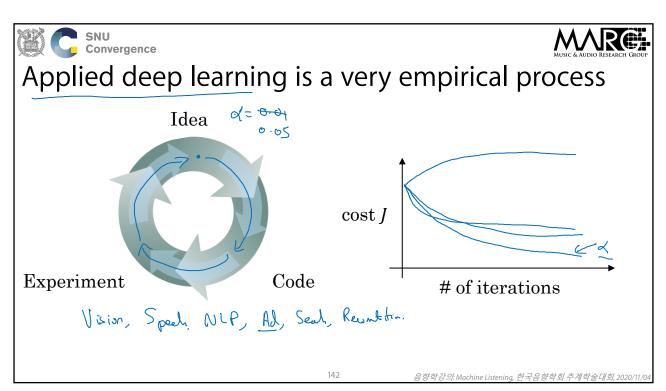


Deep Neural Networks

Parameters vs Hyperparameters

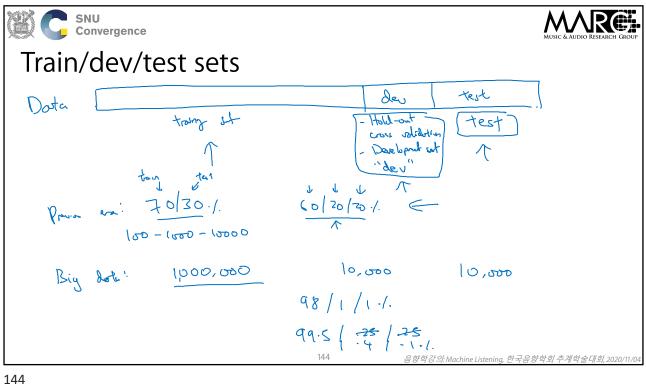
음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04





Setting up your ML application

Train/dev/test sets



Mismatched train/test distribution

Training set: Cat pictures from webpages Cat pictures from users using your app

Dev/test sets:

tran / der

tran / der

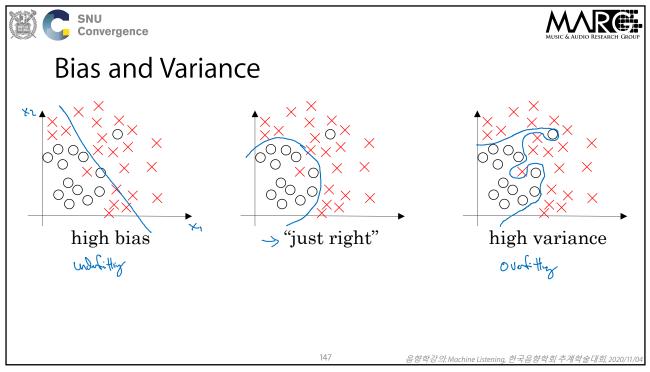
tran / der

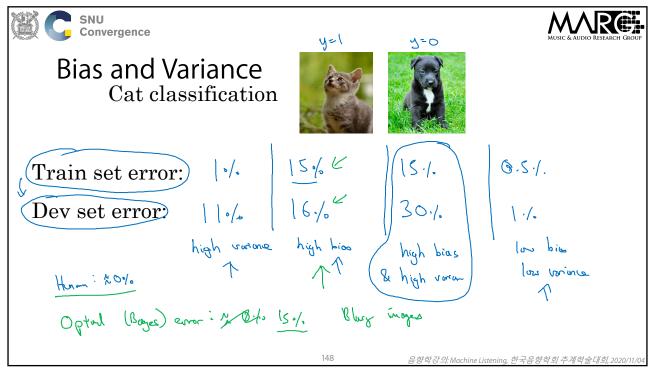
Not having a test set might be okay. (Only dev set.)

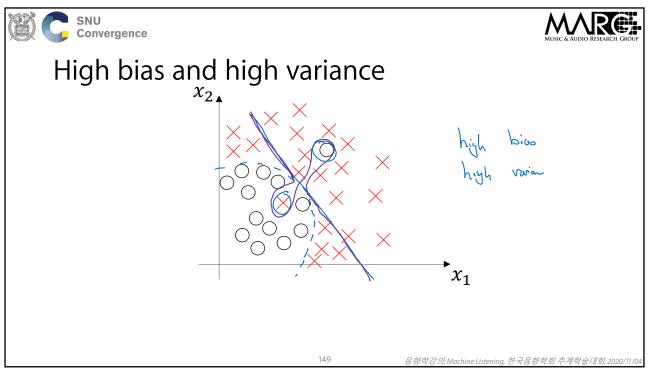
145

Setting up your ML application

Bias/Variance

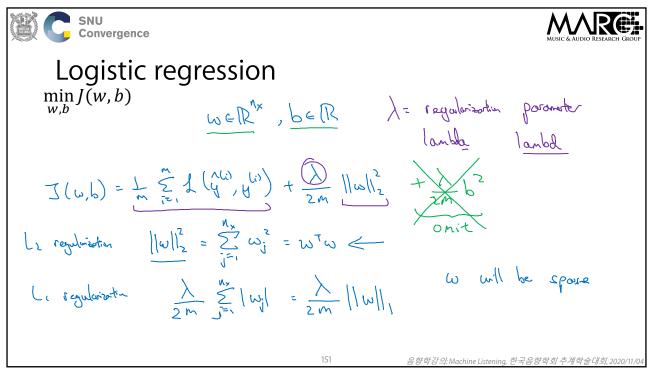






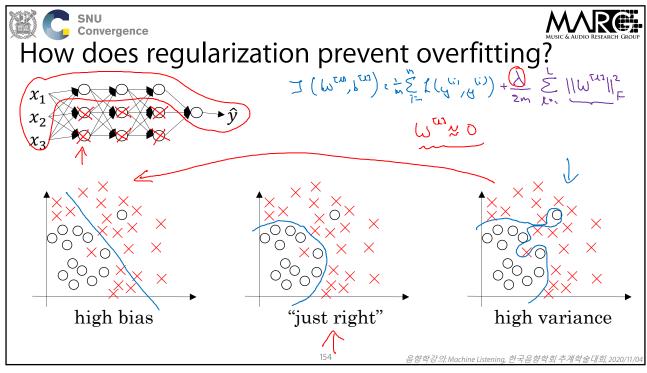
Regularizing your neural network

Regularization



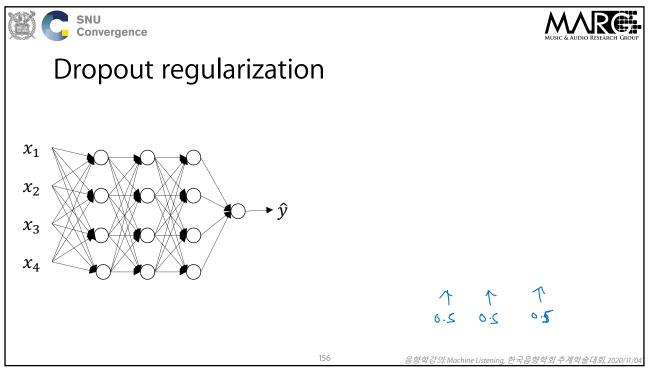
Regularizing your neural network

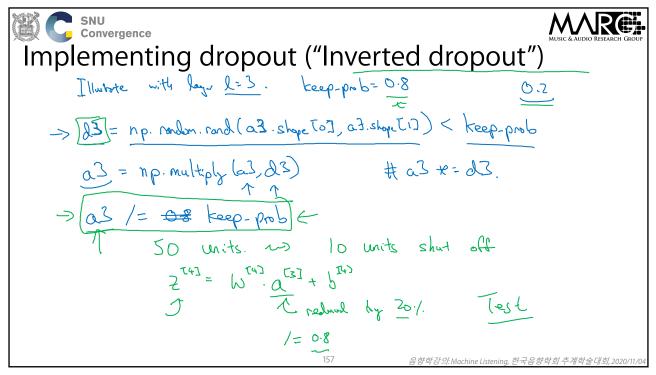
Why regularization reduces overfitting

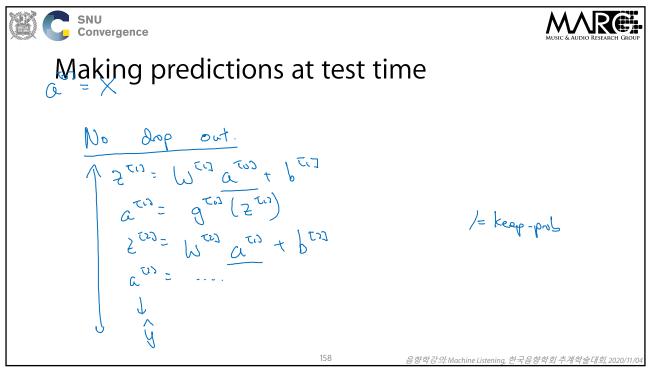


Regularizing your neural network

Dropout regularization

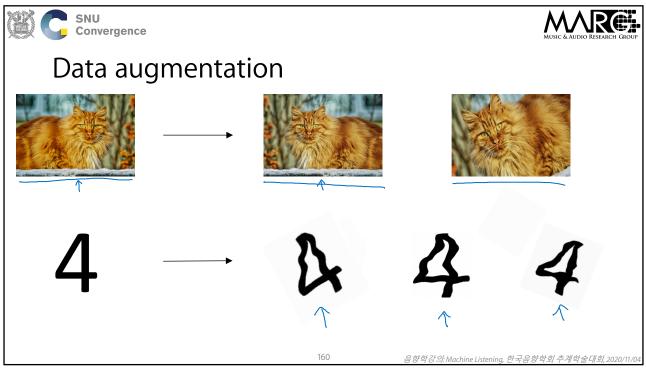


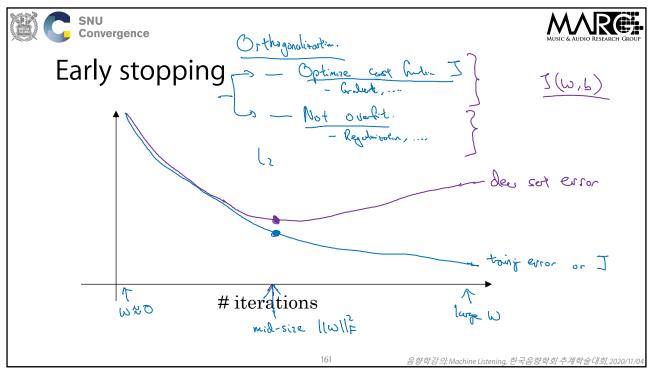




Regularizing your neural network

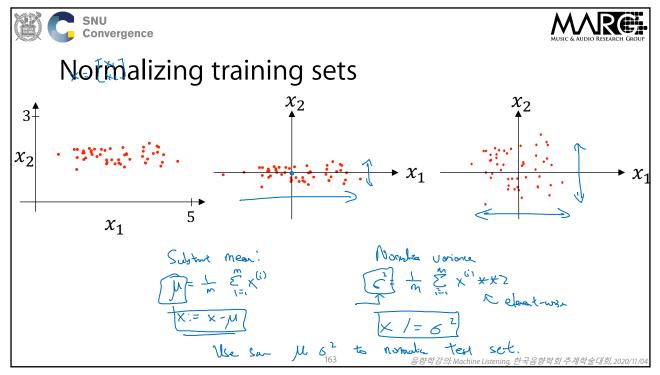
Other regularization methods

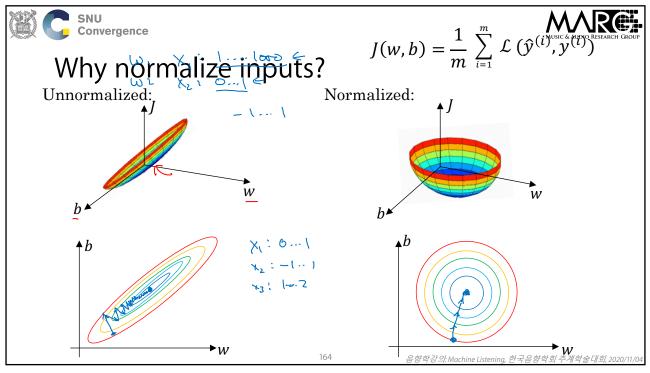




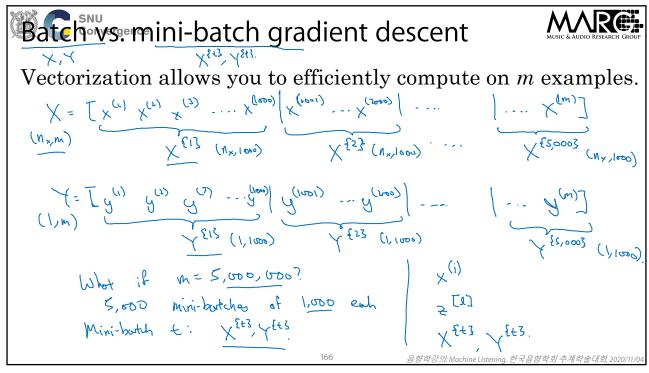
Setting up your optimization problem

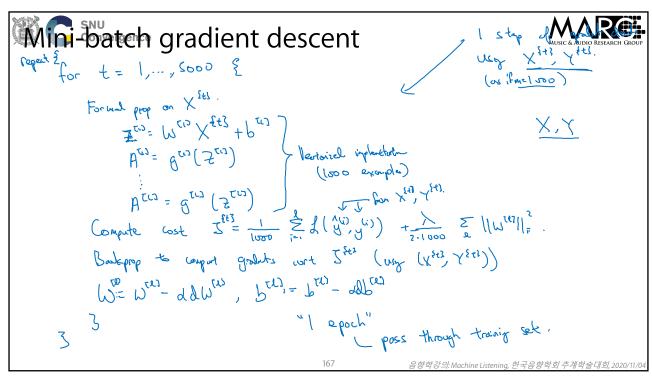
Normalizing inputs





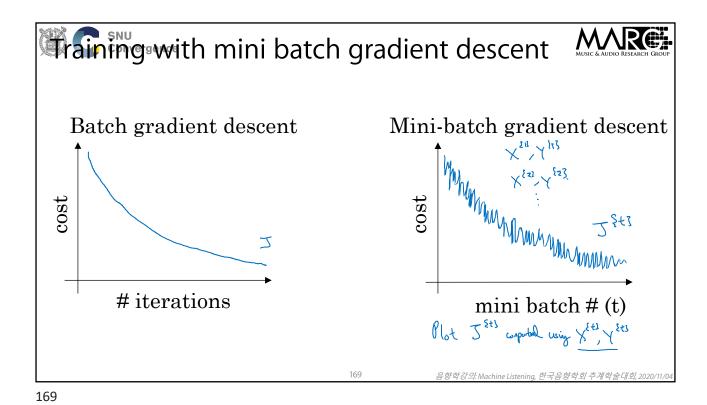
Mini-batch gradient descent

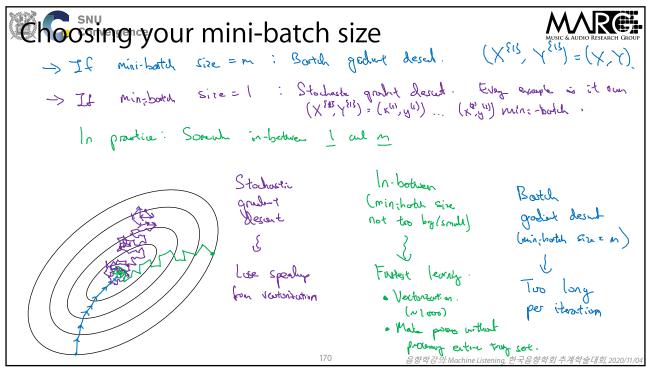


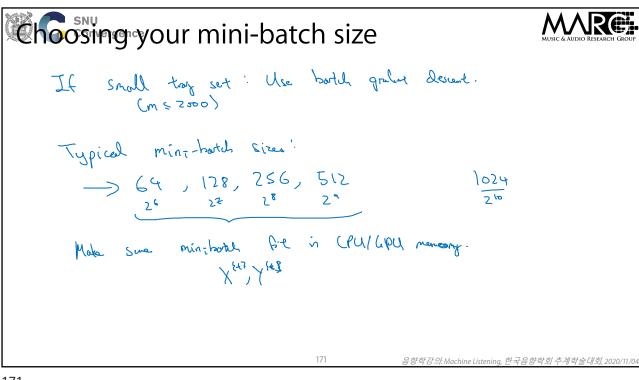


Optimization Algorithms

Understanding mini-batch gradient descent

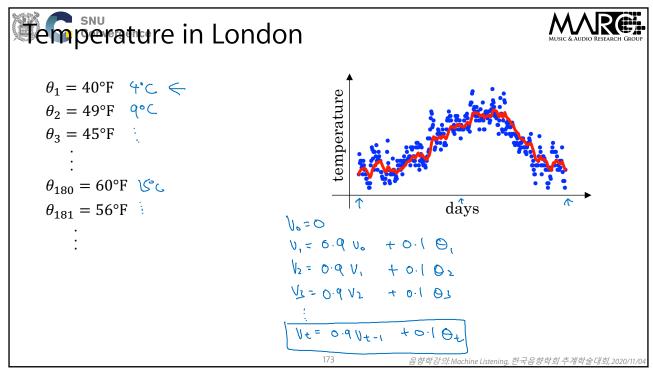


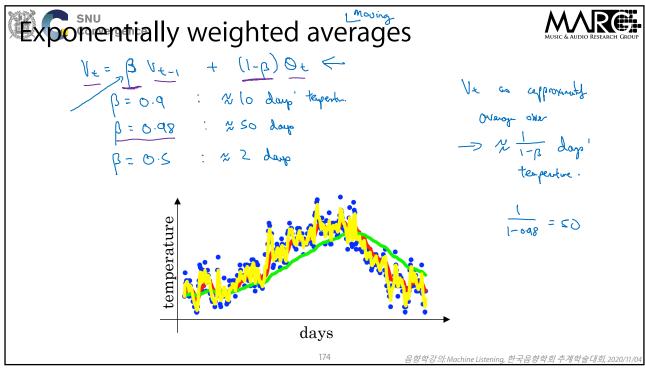




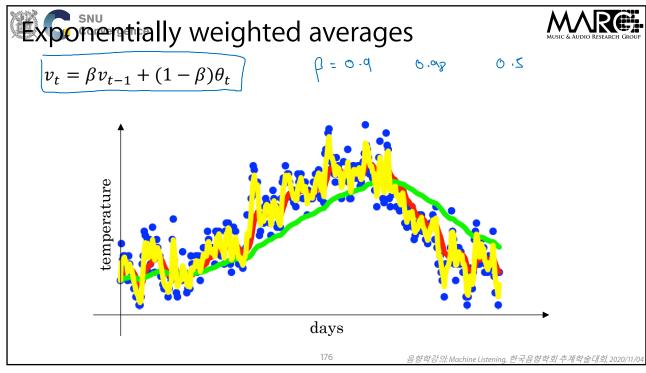
Optimization Algorithms

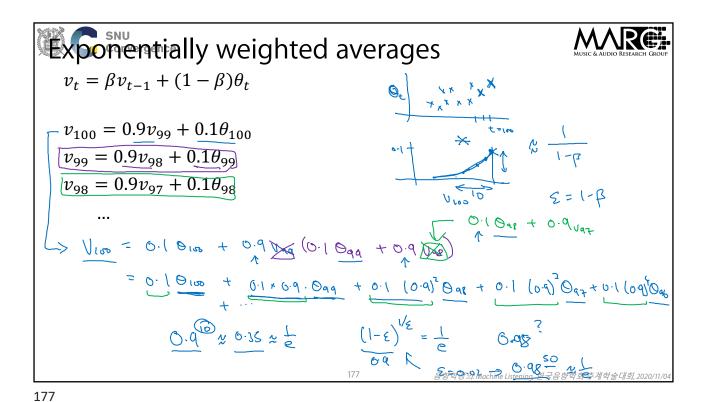
Exponentially weighted averages





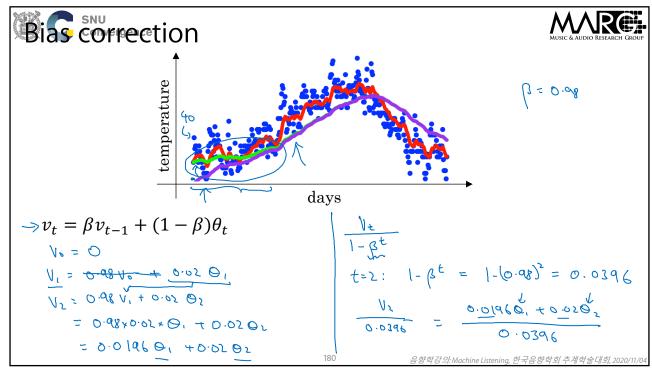
Understanding exponentially weighted averages



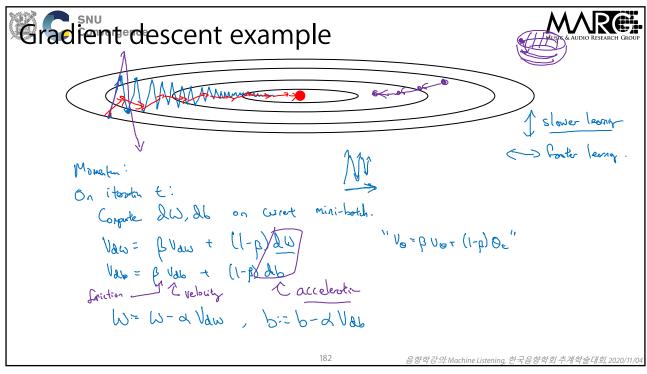




Bias correction in exponentially weighted average



Gradient descent with momentum



Implementation details

Van= 0, Vab=0

On iteration *t*:

Compute dW, db on the current mini-batch

$$\Rightarrow v_{dW} = \beta v_{dW} + M \beta dW$$

Vaw=BVaw+ dW <

$$\Rightarrow v_{db} = \beta v_{db} + (1 - \beta) \underline{db}$$

$$W = W - \alpha v_{dW}, \ b = b - \alpha v_{db}$$

law / pt

Hyperparameters: α, β

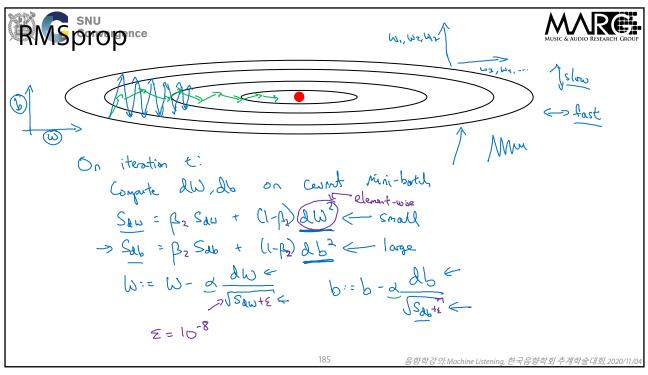
 $\beta = 0.9$

ONE OF OST X O graduty
183 으라라 간 아 Marking listening 하고요하하

183

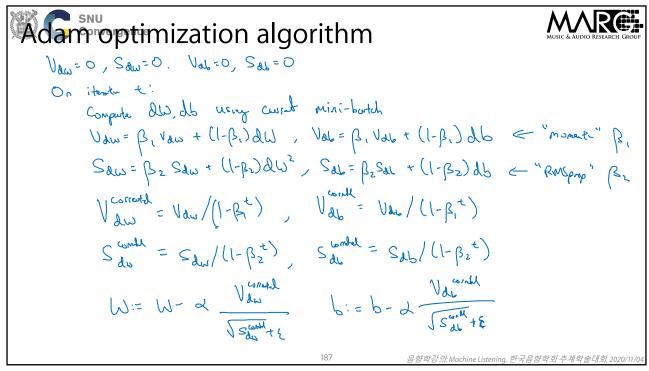
Optimization Algorithms

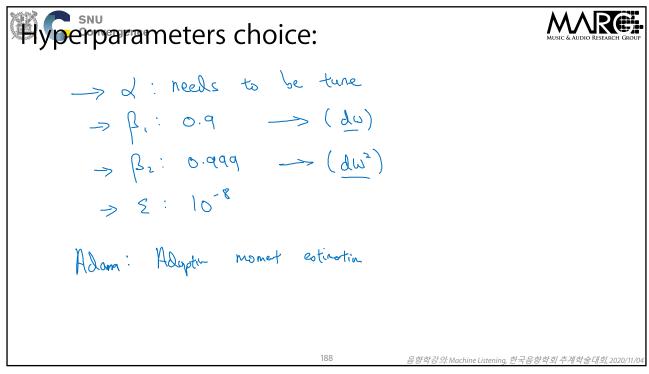
RMSprop



Optimization Algorithms

Adam optimization algorithm





Applications of Machine Listening

189

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0

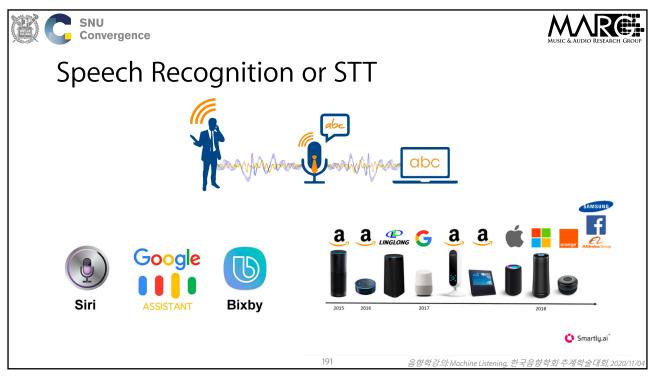
189

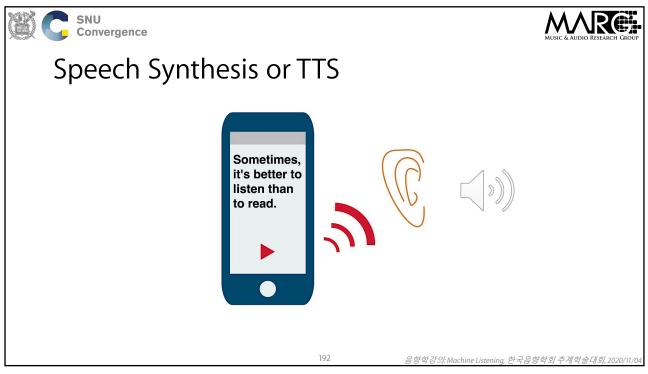
Machine Listening Applications

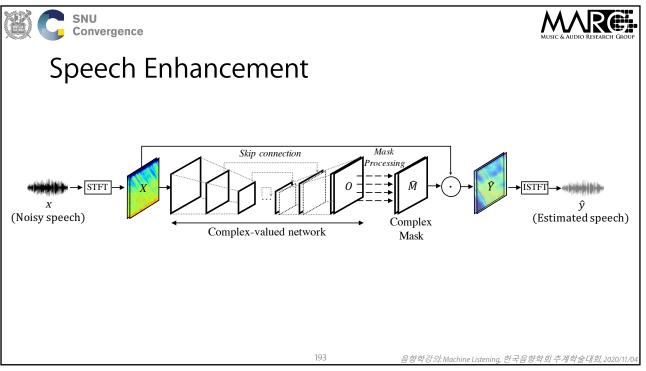
- Speech recognition (speech-to-text or STT)
- Speaker identification/verification
- Emotion recognition
- Speech enhancement
- Source separation
- Automatic music transcription
- Genre/Artist identification
- Music identification
- Lyric-audio alignment
- Speech synthesis (text-to-speech or TTS)
- Singing voice synthesis
- And many more...

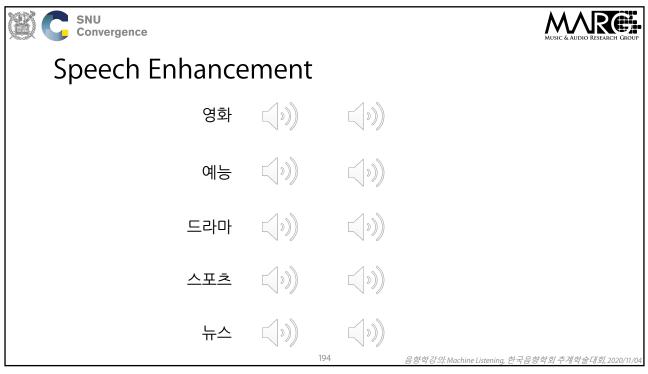
190

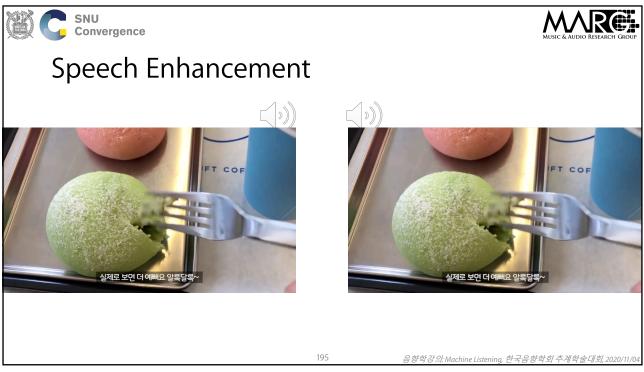
음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/0

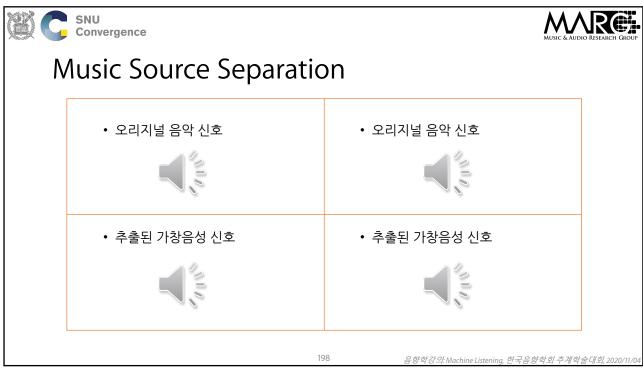


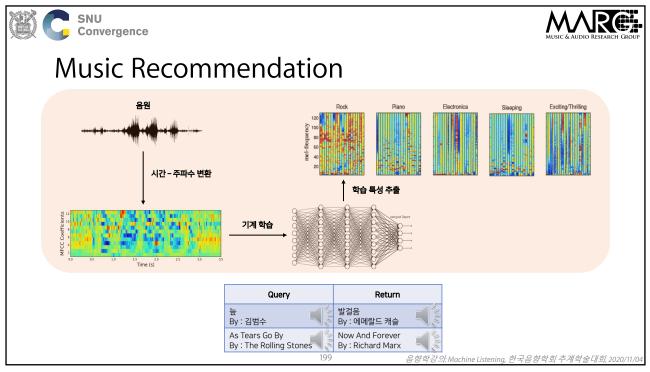


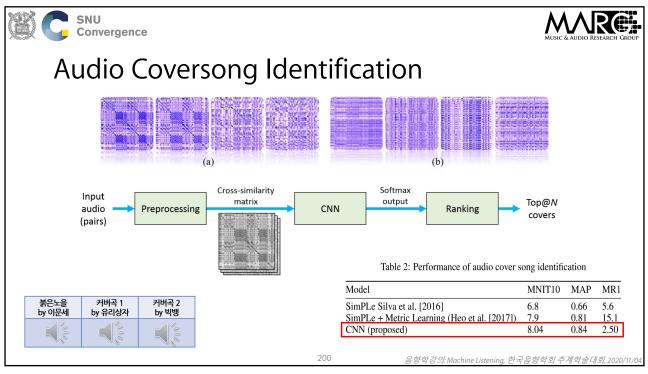


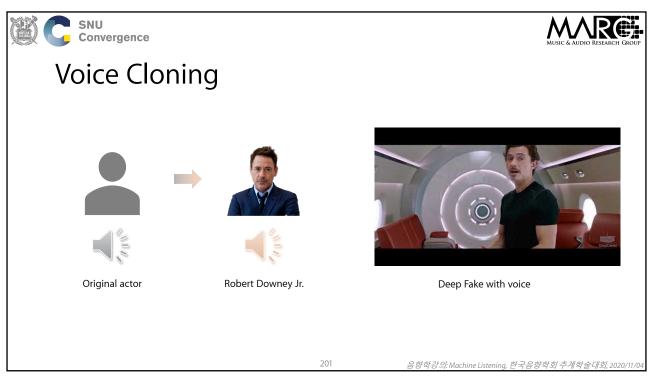


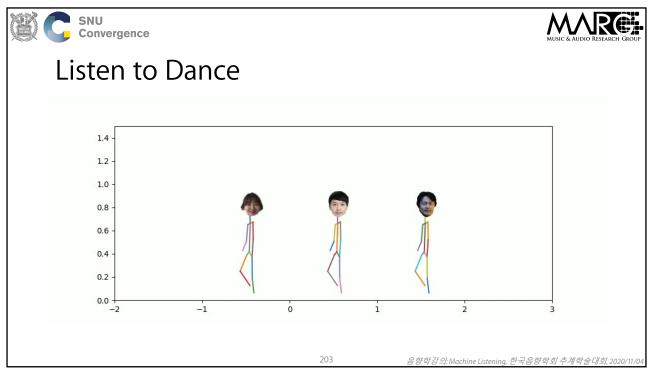


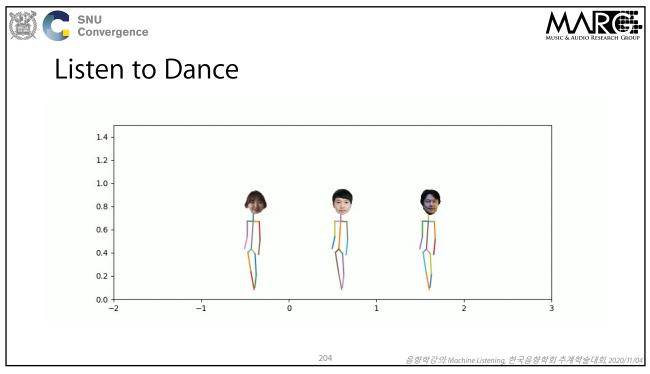












Questions?

서울대학교 지능정보융합학과 음악오디오연구실 이교구 kglee@snu.ac.kr

205

음향학강의: Machine Listening, 한국음향학회 추계학술대회, 2020/11/04